

I . 개념잡기 기본이론 II. 실전문제풀이 III. 기출문제 (24년~19년)

CBT

기출복원 완벽반영!

편저 박종규 정보통신기술사

2025

정보통신(산업)기사 시험대비 개념과 기출을 한번에! 정보지원수입니 지, 기

수험

가이드

정보통신(산업)기사 _ 정보전송일반

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

5G

2. 시험과목

	정보통신기사 정보통신산업기사	
필기	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 정보시스템운용	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 컴퓨터일반 및 정보설비기준
	5. 컴퓨터일반 및 정보설비기준	
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사 정보통신산업기사		
	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,	
필기	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)	
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간	
실기	• 검정방법 : 필답형 : 주관식 필기 15~20문제		
	• 시험기간 : 2시간 30분		

4. 합격기준

- 필기 : 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
- 실기 : 100점을 만점으로 하여 60점 이상

5. 응시자격 및 경력인정 기준

- 산업기사 취득 후 + 실무경력 1년
- 기능사 취득 후 + 실무경력 3년
- 동일 및 유사 직무분야의 다른 종목 기사 등급 이상의 자격 취득자
- 대졸(관련학과)
- 전문대졸(3년제/관련학과) 후 + 실무경력 1년
- 전문대졸(2년제/관련학과) 후 + 실무경력 2년
- 기술훈련과정 이수자(기사수준)
- 기술훈련과정 이수자(산업기사수준) 이수 후 + 실무경력 2년
- 실무경력 4년 등

수도스터디 _ sudostudy.net

GUIDE

들어가는 정보통신(산업)기사 _ 정보전송일반

5G .

순서

CHAPTER 01 무선통신시스템 구축

01	기술사항검토	10
	1. 변조(Modulation)의 개념 ······	10
	2. 변조(Modulation)의 목적 ······	11
	3. 변조(Modulation)의 종류 ······	11
	• 실전 핵심 문제	30
02	회로시뮬레이션	40
	1. 발진회로	40
	2. 필터회로	47
	3. 논리회로	48
	• 실전 핵심 문제 ······	62

C)

 \mathcal{O}

CHAPTER 02 정보통신선로 검토

01	유선선로설비	76
	1. 전송매체의 종류 ······	76
	• 실전 핵심 문제	94
02	전파의 전파	106
	1. 전파(Wave)의 전파(Propagation) 개념 ······	106
	2. 전자파 이론	108
	• 실전 핵심 문제	114

(C)

CHAPTER 03 네트워크 품질시험

5G

01	시험방법	124
	1. 신호의 형태 ·····	124
	2. 시스템의 개념 ·····	125
	3. 에너지신호와 전력신호 ······	126
	4. 신호크기 RMS 및 전송단위 dB ······	127
	• 실전 핵심 문제 ······	132
02	단위시험	134
	1. 전송속도	134
	2. 채널용량	138
	3. 전송 장애 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	140
	4. 에러검출 및 정정(에러제어) ······	141
	• 실전 핵심 문제 ······	156
03	종합시험	170
	1. 단방향 및 양방향 통신, 직・병렬 전송	170
	2. 동기방식 및 비동기방식 전송 ······	172
	• 실전 핵심 문제	

들어가는 정보통신(산업)기사 <u>정보전송일반</u>

5G

순서

CHAPTER 04 무선통신시스템 장비발주

01	장비규격검토	182
	1. 교환방식 과 듀플렉스(FDD와 TDD)	182
	2. 다중화기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	184
	3. 다중접속기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	188
	4. 전송프레임 기본구조 ······	198
	• 실전 핵심 문제	204
02	전파환경측정	214
	1. 대역확산기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	214
	2. 다중경로채널 및 페이딩 ······	219
	3. 다중입출력 안테나기술 ······	223
	• 실전 핵심 문제 ······	226

부록 01 정보통신기사 기출문제

2019년도 정보통신기사 정보전송일반 234 2020년도 정보통신기사 정보전송일반 243 2021년도 정보통신기사 정보전송일반 252 2022년도 정보통신기사 정보전송일반 261 2023년도 정보통신기사 정보전송일반 270 2024년도 정보통신기사 정보전송일반 279

부록 02 정보통신산업기사 기출문제

• 2019년도 정보통신산업기사 정보전송일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	290
• 2020년도 정보통신산업기사 정보전송일반 ······	299
• 2021년도 정보통신산업기사 정보전송일반 ······	308
• 2022년도 정보통신산업기사 정보전송일반 ······	316
• 2023년도 정보통신산업기사 정보전송일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	325
• 2024년도 정보통신산업기사 정보전송일반 ······	334

무선통신 시스템 구축

01 기술사항검토 02 회로시뮬레이션

수도스터디 _ sudostudy.net

01 기술사항검토

01 변조(Modulation)의 개념

신호 정보를 전송 매체의 채널 특성에 맞게끔 신호(정보)의 세기나 변위, 주파수, 위상 등을 적절 한 파형 형태로 변환하는 것. (주파수축에서 Frequency Shift)

연속 아날로그 변조	연속 디지털 변조	펄스 아날로그 변조	펄스 디지털 변조
AM	ASK	PAM	PNM
FM ^{(필)(실)}	FSK	PWM	PCM ^{(필)(실)}
РМ	PSK	PPM	

(1) AM(진폭변조)

가. DSB(양측파대 변조)

나. SSB(단측파대 변조)

다. VSB(잔류측파대 변조)

(2) PSK(위상편이변조)

- 가. DPSK(차동 위상 편이변조)
- 나. MSK(Minimum Shift Keying)

(3) PCM(펄스코드변조)

- 가. DM(Delta Modulation)
- 나. DPCM(차분 펄스 부호 변조)

(4) 복합변조

가. QAM = ASK + PSK(진폭 직교 변조)

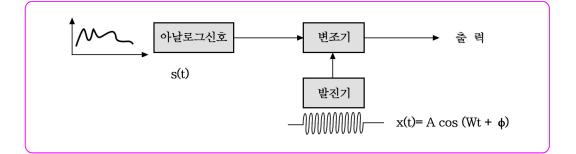
10 합격의 완성 수도스터디

02 변조(Modulation)의 목적(필)(실)

(1) 원거리전송

주파수가 높은 반송파(발진주파수)에 실어(변조) 전송해 원거리 까지 신호전달

(2) 효율적인 안테나 방사(복사) 및 장비의 소형화

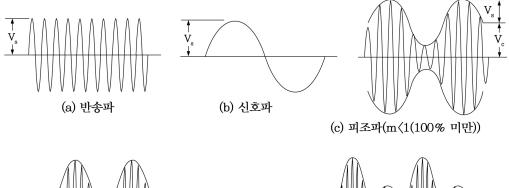

반송파의 주파수가 높아져 파장($\lambda = \frac{c}{f}[m], c = 3 \times 10^8 [m/s]$)이 짧아지므로, 안테나 및 장비 의 소형화 가능

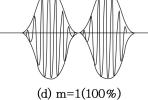
(3) 하나의 통신로에 여러 신호의 동시 전송

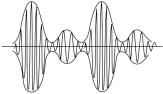
반송파의 주파수가 높아져 사용대역폭이 넓어지므로, 대역폭을 분할하여 여려 개의 신호를 동시 에 전송(FDM) 가능

(4) 잡음과 간섭으로부터 강인

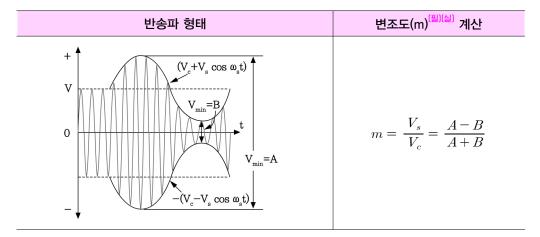
반송파의 주파수가 높아져 외부잡음에 강인 해지므로, 신호대잡음비 $(\frac{s}{n})$ 가 향상됨

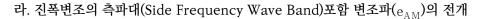

03 변조(Modulation)의 종류


- (1) 진폭변조 (AM: Amplitude Modulation)
 - 가. 신호파의 크기에 따라 반송파의 진폭을 변화시키는 방식
 - 나. 변조파(e_{AM})의 전개


$$\begin{split} \mathbf{e}_{\mathrm{AM}} &= (V_c + V_s \cos \omega_s t) \cos \omega_c t \\ &= V_c (1 + \frac{V_s}{V_c} \cos \omega_s t) \cos \omega_c t \\ \end{split}$$
여기서, $\frac{V_s}{V_c} \stackrel{=}{=} \mathbf{m}(면조\mathbf{E}^{(\texttt{H})})$ 라 하고, 그 백분율을 면조율이라 함

다. 변조파(e_{AM})의 파형 및 변조도에 따른 특성[≝]

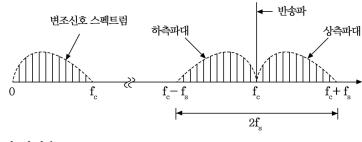



(e) m=1.25(125%)

• 변조도(m<1)인 경우 전력소비가 큼

• 변조도(m=1)인 경우 전력낭비가 없고 이상적임

• 변조도(m〉1)인 경우 과변조로 신호가 일그러짐(신호회복이 어려움)



 $e_{AM} = V_c (1 + m \cos \omega_s t) \cos \omega_c t = V_c \cos \omega_c t + m V_c \cos \omega_s t \cos \omega_c t$

$$= V_c \cos \omega_c t + \frac{m V_c}{2} \cos (\omega_c + \omega_s) t + \frac{m V_c}{2} \cos (\omega_c - \omega_s) t$$

제1항(반송파) 제2항(상측파대) 제3항(하측파대)

• 반송파의 전력을 P_c

• 진폭변조 된 AM파의 상측파대 전력을 P_u

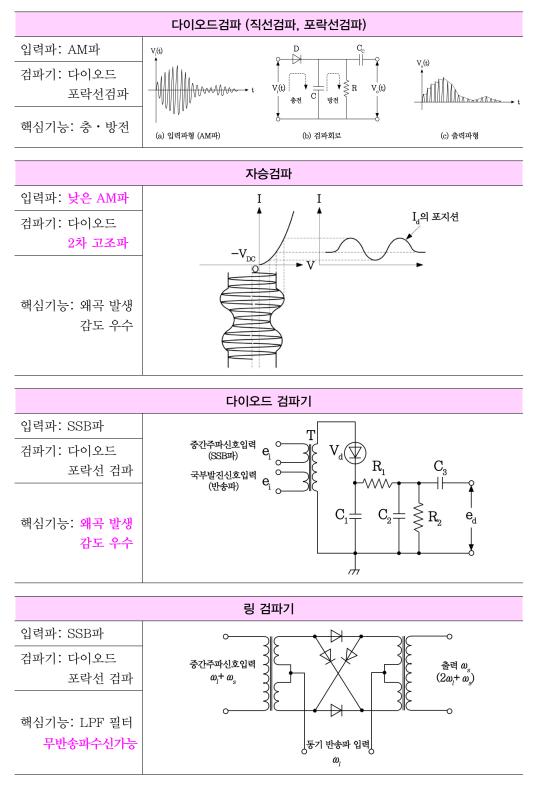
- 진폭변조 된 AM파의 하측파대 전력을 P_l
- 전력 $P = VI = \frac{V^2}{R} [W]$ 을 적용하여 각각을 전개

$$P_c = \frac{\sqrt{2}}{R} = \frac{V_c^2}{2R} [W]$$
$$m V_c$$


$$P_{u} = \left(\frac{\frac{2}{\sqrt{2}}}{\sqrt{2}}\right)^{2} \times \frac{1}{R} = \frac{m^{2}V_{c}^{2}}{8R} = \frac{m^{2}}{4} \times \frac{V_{c}^{2}}{2R} = \frac{m^{2}}{4}P_{c}\left[W\right]$$
$$P_{l} = \left(\frac{\frac{mV_{c}}{2}}{\sqrt{2}}\right)^{2} \times \frac{1}{R} = \frac{m^{2}V_{c}^{2}}{8R} = \frac{m^{2}}{4} \times \frac{V_{c}^{2}}{2R} = \frac{m^{2}}{4}P_{c}\left[W\right]$$

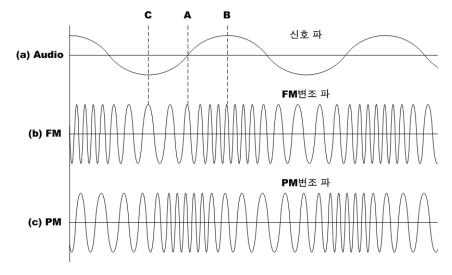
•
$$P_{AM} = P_c + P_u + P_l \circ | \square \blacksquare$$
,
 $P_{AM} = P_c (1 + \frac{m^2}{4} + \frac{m^2}{4}) = P_c (1 + \frac{m^2}{2}) [W]$

• 변조도 100[%](m=1) 일 때,


- P_{AM} (피변조파전력)은 P_c (반송파의 전력)의 1.5배^(圖)
- 반송파(P_c), 상측파(P_u), 하측파(P_l)의 전력비는 1:1/4:1/4^[≝]

마. AM변조방식의 측파대(Side Frequency Wane Band)에 따른 스팩트럼 형태

바. AM 검파(복조)기


(2) 주파수변조 (FM: Frequency Modulation)

가. 신호파의 변화(주파수 또는 위상)에 따라 반송파를 변화시키는 방식

나. 변조파(e_{FM})의 전개 $e_s(t) = V_s \cos \omega_s t (\omega_s = 2\pi f_s, f_s: 신호 주파수)$ $e_c(t) = V_c \cos \omega t (\omega_c = 2\pi f_c, f_c: 반송 주파수)$ $e_{FM}(t) = V_c \cos (\omega_c t + k \int_0^t V_s(\tau) d\tau) = V_c \cos (\omega_c t + k V_s \int_0^t \cos \omega_s \tau d\tau)$ $= V_c \cos (\omega_c t + \frac{\Delta \omega}{\omega_s} \sin \omega_s t) = V_c \cos (\omega_c t + m_f \sin \omega_s t)$ 여기서, $m_f = \frac{\Delta \omega}{\omega} = \frac{\Delta f}{f} = 변조지수^{(H)}$

$$\Delta f$$
는 최대 주파수 편이, 대역폭 $B = 2(\Delta f + f_s)^{(\blacksquare)}$

다. 변조파(_{е_{FM}})의 파형^[픨]

• 진폭변조에 비해 잡음 및 간섭에 강인

• 진폭변조에 비해 신호대잡음비 개선

• 단, 전송채널의 주파수변동에 매우 취약하고, 넓은 주파수 대역이 요구됨

라. FM송신기 구조^Ⅲ

- FM 삼각잡음 개선을 위한 프리앰파시스회로 사용
- 입력 신호를 제어하여, 대역폭 조정이 가능한 IDC(순시편이회로) 사용
- 높은 주파수로 천이 할 수 있는 주파수 체배기 사용