

I . 개념잡기 기본이론 II. 실전문제풀이 III. 기출문제 (24년~19년)

CBT

기출복원 완벽반영!

편저 박종규 정보통신기술사

2025

정보통신(산업)기사 시험대비 개념과 기출을 한번에! 정보지원수입니 지, 기

수험

가이드

정보통신(산업)기사 _ 정보전송일반

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

5G

2. 시험과목

	정보통신기사	정보통신산업기사
필기	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 정보시스템운용	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 컴퓨터일반 및 정보설비기준
	5. 컴퓨터일반 및 정보설비기준	
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사 정보통신산업기사	
	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,
필기	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간
실기	• 검정방법 : 필답형 : 주관식 필기 15~20문제	
	• 시험기간 : 2시간 30분	

4. 합격기준

- 필기 : 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
- 실기 : 100점을 만점으로 하여 60점 이상

5. 응시자격 및 경력인정 기준

- 산업기사 취득 후 + 실무경력 1년
- 기능사 취득 후 + 실무경력 3년
- 동일 및 유사 직무분야의 다른 종목 기사 등급 이상의 자격 취득자
- 대졸(관련학과)
- 전문대졸(3년제/관련학과) 후 + 실무경력 1년
- 전문대졸(2년제/관련학과) 후 + 실무경력 2년
- 기술훈련과정 이수자(기사수준)
- 기술훈련과정 이수자(산업기사수준) 이수 후 + 실무경력 2년
- 실무경력 4년 등

수도스터디 _ sudostudy.net

GUIDE

들어가는 정보통신(산업)기사 _ 정보전송일반

5G .

순서

CHAPTER 01 무선통신시스템 구축

01	기술사항검토	10
	1. 변조(Modulation)의 개념 ······	10
	2. 변조(Modulation)의 목적 ······	11
	3. 변조(Modulation)의 종류 ······	11
	• 실전 핵심 문제	30
02	회로시뮬레이션	40
	1. 발진회로	40
	2. 필터회로	47
	3. 논리회로	48
	• 실전 핵심 문제 ······	62

C)

CHAPTER 02 정보통신선로 검토

01	유선선로설비	76
	1. 전송매체의 종류 ······	76
	• 실전 핵심 문제	94
02	전파의 전파	106
	1. 전파(Wave)의 전파(Propagation) 개념 ······	106
	2. 전자파 이론	108
	• 실전 핵심 문제	114

(C)

CHAPTER 03 네트워크 품질시험

5G

01	시험방법	124
	1. 신호의 형태 ·····	124
	2. 시스템의 개념 ·····	125
	3. 에너지신호와 전력신호 ······	126
	4. 신호크기 RMS 및 전송단위 dB ······	127
	• 실전 핵심 문제 ······	132
02	단위시험	134
	1. 전송속도	134
	2. 채널용량	138
	3. 전송 장애 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	140
	4. 에러검출 및 정정(에러제어) ······	141
	• 실전 핵심 문제 ······	156
03	종합시험	170
	1. 단방향 및 양방향 통신, 직・병렬 전송	170
	2. 동기방식 및 비동기방식 전송 ······	172
	• 실전 핵심 문제	

들어가는 정보통신(산업)기사 <u>정보전송일반</u>

5G

순서

CHAPTER 04 무선통신시스템 장비발주

01	장비규격검토 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	182
	1. 교환방식 과 듀플렉스(FDD와 TDD)	182
	2. 다중화기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	184
	3. 다중접속기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	188
	4. 전송프레임 기본구조 ······	198
	• 실전 핵심 문제	204
02	전파환경측정	214
	1. 대역확산기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	214
	2. 다중경로채널 및 페이딩 ······	219
	3. 다중입출력 안테나기술 ······	223
	• 실전 핵심 문제 ······	226

부록 01 정보통신기사 기출문제

2019년도 정보통신기사 정보전송일반 234 2020년도 정보통신기사 정보전송일반 243 2021년도 정보통신기사 정보전송일반 252 2022년도 정보통신기사 정보전송일반 261 2023년도 정보통신기사 정보전송일반 270 2024년도 정보통신기사 정보전송일반 279

부록 02 정보통신산업기사 기출문제

• 2019년도 정보통신산업기사 정보전송일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	290
• 2020년도 정보통신산업기사 정보전송일반 ······	299
• 2021년도 정보통신산업기사 정보전송일반 ······	308
• 2022년도 정보통신산업기사 정보전송일반 ······	316
• 2023년도 정보통신산업기사 정보전송일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	325
• 2024년도 정보통신산업기사 정보전송일반 ······	334

무선통신 시스템 구축

01 기술사항검토 02 회로시뮬레이션

수도스터디 _ sudostudy.net

01 기술사항검토

01 변조(Modulation)의 개념

신호 정보를 전송 매체의 채널 특성에 맞게끔 신호(정보)의 세기나 변위, 주파수, 위상 등을 적절 한 파형 형태로 변환하는 것. (주파수축에서 Frequency Shift)

연속 아날로그 변조	연속 디지털 변조	펄스 아날로그 변조	펄스 디지털 변조
AM	ASK	PAM	PNM
FM ^{(필)(실)}	FSK	PWM	PCM ^{(필)(실)}
РМ	PSK	PPM	

(1) AM(진폭변조)

가. DSB(양측파대 변조)

나. SSB(단측파대 변조)

다. VSB(잔류측파대 변조)

(2) PSK(위상편이변조)

- 가. DPSK(차동 위상 편이변조)
- 나. MSK(Minimum Shift Keying)

(3) PCM(펄스코드변조)

- 가. DM(Delta Modulation)
- 나. DPCM(차분 펄스 부호 변조)

(4) 복합변조

가. QAM = ASK + PSK(진폭 직교 변조)

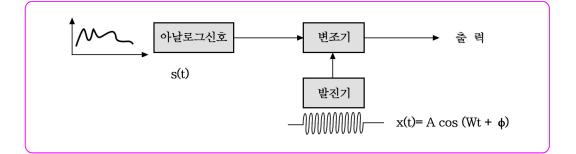
10 합격의 완성 수도스터디

02 변조(Modulation)의 목적(필)(실)

(1) 원거리전송

주파수가 높은 반송파(발진주파수)에 실어(변조) 전송해 원거리 까지 신호전달

(2) 효율적인 안테나 방사(복사) 및 장비의 소형화

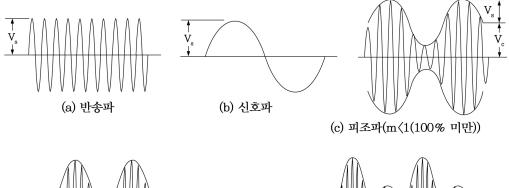

반송파의 주파수가 높아져 파장($\lambda = \frac{c}{f}[m], c = 3 \times 10^8 [m/s]$)이 짧아지므로, 안테나 및 장비 의 소형화 가능

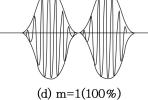
(3) 하나의 통신로에 여러 신호의 동시 전송

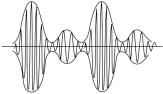
반송파의 주파수가 높아져 사용대역폭이 넓어지므로, 대역폭을 분할하여 여려 개의 신호를 동시 에 전송(FDM) 가능

(4) 잡음과 간섭으로부터 강인

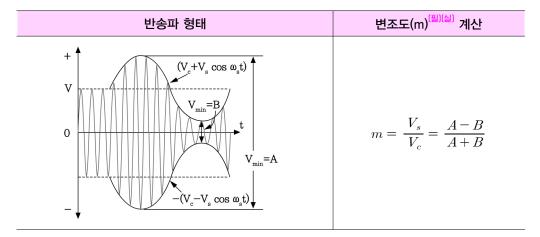
반송파의 주파수가 높아져 외부잡음에 강인 해지므로, 신호대잡음비 $(\frac{s}{n})$ 가 향상됨

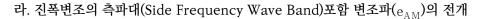

03 변조(Modulation)의 종류


- (1) 진폭변조 (AM: Amplitude Modulation)
 - 가. 신호파의 크기에 따라 반송파의 진폭을 변화시키는 방식
 - 나. 변조파(e_{AM})의 전개


$$\begin{split} \mathbf{e}_{\mathrm{AM}} &= (V_c + V_s \cos \omega_s t) \cos \omega_c t \\ &= V_c (1 + \frac{V_s}{V_c} \cos \omega_s t) \cos \omega_c t \\ \end{split}$$
여기서, $\frac{V_s}{V_c} \stackrel{=}{=} \mathbf{m}(면조\mathbf{E}^{(\texttt{H})})$ 라 하고, 그 백분율을 면조율이라 함

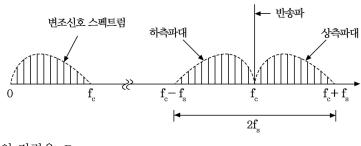
다. 변조파(e_{AM})의 파형 및 변조도에 따른 특성[≝]




(e) m=1.25(125%)

• 변조도(m<1)인 경우 전력소비가 큼

• 변조도(m=1)인 경우 전력낭비가 없고 이상적임


• 변조도(m〉1)인 경우 과변조로 신호가 일그러짐(신호회복이 어려움)

 $e_{AM} = V_c (1 + m \cos \omega_s t) \cos \omega_c t = V_c \cos \omega_c t + m V_c \cos \omega_s t \cos \omega_c t$

$$= V_c \cos \omega_c t + \frac{m V_c}{2} \cos (\omega_c + \omega_s) t + \frac{m V_c}{2} \cos (\omega_c - \omega_s) t$$

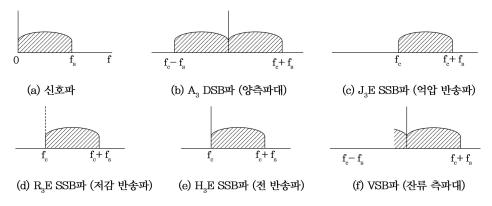
제1항(반송파) 제2항(상측파대) 제3항(하측파대)

• 반송파의 전력을 P_c

• 진폭변조 된 AM파의 상측파대 전력을 P_u

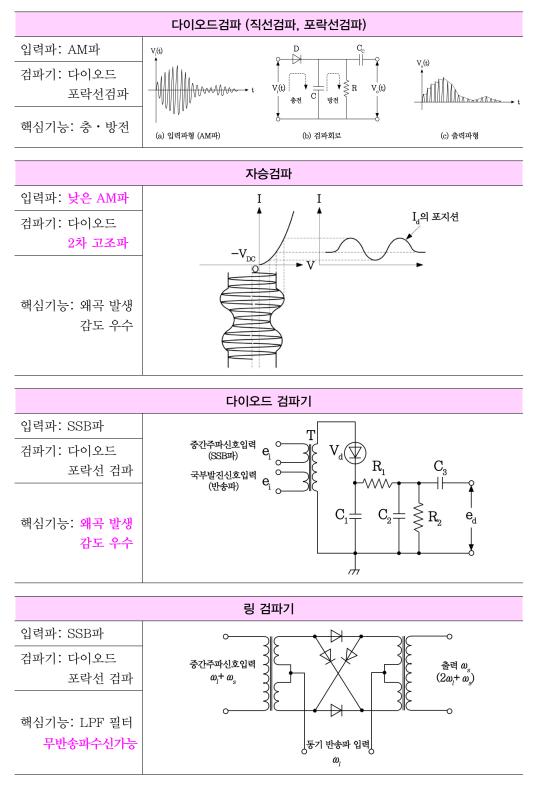
- 진폭변조 된 AM파의 하측파대 전력을 P_l
- 전력 $P = VI = \frac{V^2}{R} [W]$ 을 적용하여 각각을 전개

$$P_c = \frac{\left(\sqrt{2}\right)}{R} = \frac{V_c^2}{2R} [W]$$
$$m V_c$$


$$P_{u} = \left(\frac{\overline{2}}{\sqrt{2}}\right)^{2} \times \frac{1}{R} = \frac{m^{2} V_{c}^{2}}{8R} = \frac{m^{2}}{4} \times \frac{V_{c}^{2}}{2R} = \frac{m^{2}}{4} P_{c} \left[W\right]$$
$$P_{l} = \left(\frac{\overline{2}}{\sqrt{2}}\right)^{2} \times \frac{1}{R} = \frac{m^{2} V_{c}^{2}}{8R} = \frac{m^{2}}{4} \times \frac{V_{c}^{2}}{2R} = \frac{m^{2}}{4} P_{c} \left[W\right]$$

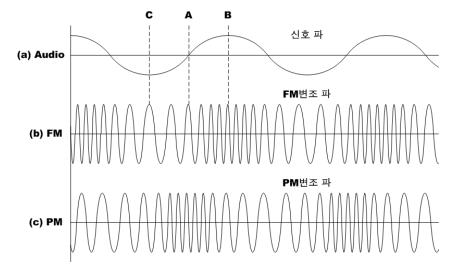
•
$$P_{AM} = P_c + P_u + P_l$$
 이므로,
 $P_{AM} = P_c (1 + \frac{m^2}{4} + \frac{m^2}{4}) = P_c (1 + \frac{m^2}{2}) [W]$

• 변조도 100[%](m=1) 일 때,


- P_{AM} (피변조파전력)은 P_c (반송파의 전력)의 1.5배^(圖)
- 반송파(P_c), 상측파(P_u), 하측파(P_l)의 전력비는 1:1/4:1/4^[]]

마. AM변조방식의 측파대(Side Frequency Wane Band)에 따른 스팩트럼 형태

바. AM 검파(복조)기


(2) 주파수변조 (FM: Frequency Modulation)

가. 신호파의 변화(주파수 또는 위상)에 따라 반송파를 변화시키는 방식

나. 변조파(e_{FM})의 전개 $e_s(t) = V_s \cos \omega_s t (\omega_s = 2\pi f_s, f_s: 신호 주파수)$ $e_c(t) = V_c \cos \omega t (\omega_c = 2\pi f_c, f_c: 반송 주파수)$ $e_{FM}(t) = V_c \cos (\omega_c t + k \int_0^t V_s(\tau) d\tau) = V_c \cos (\omega_c t + k V_s \int_0^t \cos \omega_s \tau d\tau)$ $= V_c \cos (\omega_c t + \frac{\Delta \omega}{\omega_s} \sin \omega_s t) = V_c \cos (\omega_c t + m_f \sin \omega_s t)$ 여기서, $m_f = \frac{\Delta \omega}{\omega} = \frac{\Delta f}{f} = 변조지수^{(H)}$

$$\Delta f$$
는 최대 주파수 편이, 대역폭 $B = 2(\Delta f + f_s)^{(\blacksquare)}$

다. 변조파(_{е_{FM}})의 파형^[픨]

• 진폭변조에 비해 잡음 및 간섭에 강인

• 진폭변조에 비해 신호대잡음비 개선

• 단, 전송채널의 주파수변동에 매우 취약하고, 넓은 주파수 대역이 요구됨

라. FM송신기 구조^Ⅲ

- FM 삼각잡음 개선을 위한 프리앰파시스회로 사용
- 입력 신호를 제어하여, 대역폭 조정이 가능한 IDC(순시편이회로) 사용
- 높은 주파수로 천이 할 수 있는 주파수 체배기 사용

I.개념잡기 기본이론 II. 실전문제품이 III. 기출문제 (24년~19년)

CBT

기출복원 완벽반영!

편저 **박종규** 정보통신기술사

2025

정보통신(산업)기사 시험대비 개념과 기출을 한번에! 정보통신7171 1271

수험

가이드

정보통신(산업)기사 _ **정보통신기기**

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

5G

2. 시험과목

	정보통신기사	정보통신산업기사
필기	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 정보시스템운용 5. 컴퓨터일반 및 정보설비기준	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 컴퓨터일반 및 정보설비기준
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사 정보통신산업기사	
	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,
필기	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간
실기	• 검정방법 : 필답형 : 주관식 필기 15~20문제	
	• 시험기간 : 2시간 30분	

4. 합격기준

- 필기 : 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
- 실기 : 100점을 만점으로 하여 60점 이상

5. 응시자격 및 경력인정 기준

- 산업기사 취득 후 + 실무경력 1년
- 기능사 취득 후 + 실무경력 3년
- 동일 및 유사 직무분야의 다른 종목 기사 등급 이상의 자격 취득자
- 대졸(관련학과)
- 전문대졸(3년제/관련학과) 후 + 실무경력 1년
- 전문대졸(2년제/관련학과) 후 + 실무경력 2년
- 기술훈련과정 이수자(기사수준)
- 기술훈련과정 이수자(산업기사수준) 이수 후 + 실무경력 2년
- 실무경력 4년 등

수도스터디 _ sudostudy.net

GUIDE

들어가는 정보통신(산업)기사 - 정보통신기기

:5G

5G .

순서

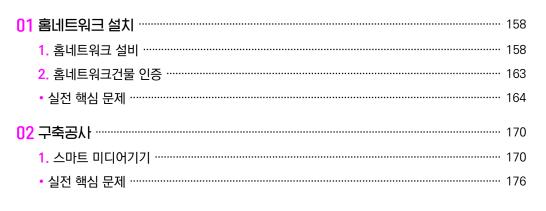
CHAPTER 01 단말기 개발검증

01 단말기 시험환경	8
1. 정보단말기의 특징과 기능 ·····	8
2. 정보단말기의 기본 구성 요소 ·····	11
• 실전 핵심 문제	18
02 통신장비 설치	22
1. 통신시스템 구성 요소 ······	22
• 실전 핵심 문제 ···································	30
03 전송설비 적용	38
1. 다중화기	38
2. 집중화기(Concentrator) ·······	43
3. 멀티미디어 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44
• 실전 핵심 문제 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	46

(C)


CHAPTER 02 회선개통

01	서비스 개통	54
	1. 전화기 기능과 동작 ·····	54
	2. 교환기의 기능과 동작 ·····	59
	3. 음향단말기기(스피커와 마이크) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	62
	• 실전 핵심 문제	64
02	무선설비 적용	72
	1. 이동통신 단말	72



<mark>2.</mark> 무선	통신 단말(IEEE802.11, 802.15, 802.16) ······	86
• 실전 혁	핵심 문제	96
<mark>03</mark> 신규(0	I전)인입선 설치 ······	104
<mark>1.</mark> 사업	자용 단말	104
<mark>2</mark> . 디지	털 정보기기	107
• 실전 혁	핵심 문제	110

CHAPTER 03 영상정보처리기기 공사

CHAPTER 04 홈네트워크 설비공사

수도스터디 _ sudostudy.net

들어가는 정보통신(산업)기사 _ 정보통신기기

5G

순서

03 서비스시스템 178 1. 융복합 단말기기 178 • 실전 핵심 문제 184

C.

:5G

부록 01 정보통신기사 기출문제

• 2019년도 정보통신기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• 190
• 2020년도 정보통신기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• 199
• 2021년도 정보통신기사 정보통신기기	· 208
• 2022년도 정보통신기사 정보통신기기	· 217
• 2023년도 정보통신기사 정보통신기기	· 226
• 2024년도 정보통신기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• 235

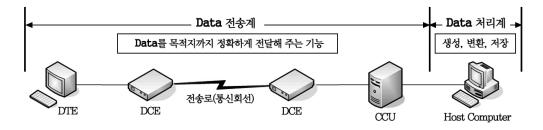
부록 02 정보통신산업기사 기출문제

• 2019년도 정보통신산업기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	246
• 2020년도 정보통신산업기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	255
• 2021년도 정보통신산업기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	264
• 2022년도 정보통신산업기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	273
• 2023년도 정보통신산업기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	282
• 2024년도 정보통신산업기사 정보통신기기 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	291

01 단말기 시험환경 02 통신장비 설치 03 전송설비 적용

수도스터디 _ sudostudy.net

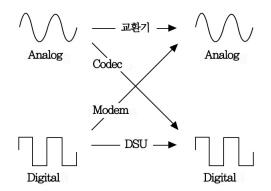
01 - 단말기 시험환경


01 정보단말기의 특징과 기능

디지털 데이터의 송수신 과정에서 최종적으로 데이터를 전송하는 기능을 수행하는 입력·출력 장치를 정보단말기라 함

입·출력 기능	전송제어 기능	기억 기능
자료 입력	송·수신 제어	임시저장
처리 후 출력	입·출력 제어	Buffer
	에러 제어	

(1) 정보통신 시스템 구성^{[픨][실]}


가. 시스템 구성도

- 정보통신 시스템은 DTE와 DCE, CCU, Host(단말, 컴퓨터)로 구성됨
- 전송로(통신회선, 전송매체, 전송채널)는 다양하게 구성할 수 있으며, 대표적으로 유선전 송로와 무선전송로로 구분할 수 있음
- 유선전송로는 동축케이블, 평행2선식, 광케이블이 있음
- 무선전송로는 300Hz ~ 3000GHz를 사용해 전파채널을 구성 할 수 있음
- 정보통신시스템은 정보를 처리(수집, 가공, 전송)하는 시스템을 말함

- ① DTE(Data Terminal Equipment : 단말 장치)
 - 데이터 단말 장치로 사용자 정보를 신호로 변환하거나, 수신한 신호를 정보로 재 변환 하는 종단 장비
 - 데이터 회선 종단 장비(DCE)와 통신함
 - 입력 · 출력 기능과 송신 · 수신 기능 제공
- ② DCE(Data Communication Equipment : 회선 종단 장치)
 - 데이터 통신 장치로 통신망과 인터페이스 하는 장치
 - 송신측에서 보내려는 정보신호를 전송로에 보내기 적합한 신호로 바꾸어 주는 기능 제공
 - 신호 변환 장치 또는 회선 종단 장치라 함
 - 신호 변환에 따른 DCE 장비 구분^{[필][실]}

정보(Data)	신호(Signal)	DCE 장비
아날로그(Analog)	아날로그(Analog)	교환기
아날로그(Analog)	디지털(Digital)	Codec
디지털(Digital)	아날로그(Analog)	MODEM
디지털(Digital)	디지털(Digital)	DSU(Digital Service Unit)

- ③ CCU(Communication Control Unit : 통신 제어 장치)
 - 데이터 전송회선과 컴퓨터 사이에 위치하며 컴퓨터가 전송회선에 데이터 전송 시 전송 에 필요한 제어를 담당하는 장치
 - 핵심기능은 데이터 전송제어 (에러제어, 흐름제어, 동기제어)기능 수행
 - 문자 조립/분해 및 직병렬 데이터 변환 기능
 - 통신회선의 감시 및 접속 제어 기능
 - 통신회선과 중앙처리장치를 결합하는 기능 (다중전송제어)

(2) 정보통신 시스템 분류

통신시스템의 기본 계통은 '중앙처리장치 → 통신제어장치 → 데이터전송회선 → 전송제어장치 → 단말장치'로 구성됨

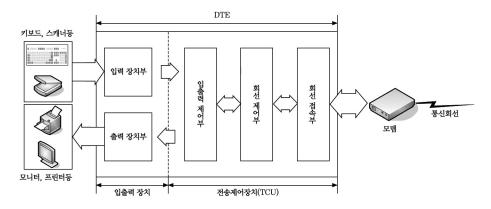
- 가. 데이터 처리 방식에 따른 분류
 - ① 중앙처리장치(Central Processing Unit)

'연산, 제어, 주 기억 장치'로 구성되며 전달된 정보를 특정 목적에 따라서 정확하게 처리 하는 기능을 수행하는 장치

② 주변장치

하드 디스크, 보조기억장치(플로피 디스크, CD, SSD)를 이용하여 중앙처리장치에서 처리되어 온 정보를 저장하거나, 출력하는 기능을 수행하는 장치

나. 데이터 통신 시스템에 따른 분류


- 온라인 시스템(On Line System)
 - 송신단말장치와 수신 단말장치 사이에 사람이 개입하지 않고, 전송매체를 거쳐 통신하 는 방식으로 실시간 처리(Real-Time Processing)시스템
 - 전송매체를 통해 데이터가 빠르고 신속하게 전달되므로 통신제어 장치 필요
 - 응용분야 : 은행(Banking), 좌석 예약(Booking), 전자 교환
- ② 오프라인 시스템(Off Line System)
 - 송신단말장치와 수신 단말장치 사이에 사람이나 기계장치의 개입이 필요한 방식으로 실시간 데이터 처리가 불가능한 형태의 시스템
 - 통신회선을 직접 사용하지 않고 기록매체(저장장치)를 이용하므로 통신제어 장치가 필 요 없음
 - 응용분야 : 데이터를 한 곳에 모아서 일정한 시점에 처리
- 다. 통신 처리 방식에 따른 분류
 - ① 실시간 처리(Real-Time Processing)
 - 컴퓨터에 의한 처리 결과를 요구 시 즉시 처리할 수 있는 시스템. 즉, 데이터가 발생하는 즉시 정보를 처리하는 형태의 시스템
 - ② 일괄처리(Remote Batch Processing)
 - 단말장치에서 발생한 정보를 일정시간, 일정량을 모았다가 한꺼번에 정보를 처리하는 시스템
 - 일정기간 수집 후 처리하는 일괄처리(Batch Processing)방법과 데이터가 단말에서 발생할 때 마다. 입력해 한건 씩 처리하는 트랜잭션처리(Transaction Processing)방법 이 있음

02 정보단말기의 기본 구성 요소

DTE (단말장치)				
입·출력 장치부	입·출력 제어부	회선 접속	부 + TCU	중앙처리장치
키보드 및 모니터 등	오류제어 및 송수신 제어 등	물리적 접속 (커넥터) 등	전송제어장치	CPU, Memory (메모리) 등

• 단말장치(DTE)는 전송제어장치와 입 · 출력 장치로 구분 할 수 있음[♥]

• 전송제어장치(TCU)는 회선 접속부, 회선 제어부, 입·출력제어부로 나뉨^[]]

- (1) 입·출력 장치부
 - 가. 입·출력 장비부
 - ① 입력 장치부^[필]

② 출력 장치부^[]]

ⓐ 인쇄장치

ⓐ 키보드 (적외선 키보드) 및 마우스(디지타이져-정밀한 마우스)

• 라인 프린터 : 한 행을 한 번에 인쇄 (고속인쇄, 최근 프린터 대부분)

• 충격식 프린터 : 글자를 헤드에 묻어있는 잉크로 때려 인쇄(가격 저렴, 타이프라이터,

• 시리얼 프린터 : 좌에서 우로 한 글자씩 인쇄(도트, 감열, 열전사)

- ⓑ 광펜 (Light Pen)

- ⓒ 음성 및 문자, 화상 입력장치

 - 광학 문자 판독기 (OCR 글씨를 인식하는 장치)

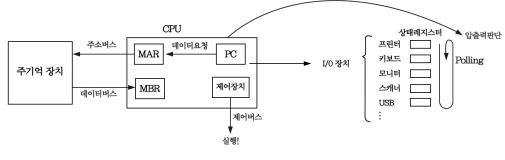
• 카드 판독기 (천공카드의 구멍을 인식하는 장치)

이 단말기 시험환경 11

도트매트릭스)

- 레이저 프린터 : 토너 가루를 미세한 레이저 빔을 이용해 종이에 뿌림
- 버블젯 프린터 : 미세한 잉크 방울을 만들어 종이에 잉크 방울을 묻힘
- 잉크젯 프린터 : 잉크를 높은 압력으로 종이에 뿌림
- ⓑ 표시장치^{[[]≝]}
 - LCD(Liquid Crystal Display)
 - 인가되는 전압에 따라 액정(LCD)의 투과도 변화를 이용하는 장치
 - 자기발광성이 없어 후광(Back Light)이 필요함
 - 소비전력이 적고, 휴대용으로 널리 쓰이는 평판 디스플레이 일종
 - PDP(Plasma Display Panel)
 - 작은 네온전구의 집합과 같은 기능을 하는 평면형 표시장치
 - 2매의 얇은 유리기판사이의 틈에 네온(Ne) 등의 가스를 봉입하고 유리의 내면에 수평 방향과 수직방향으로 배열된 투명전극으로 구성
 - CRT(Cathode Ray Tube)
 - 아날로그 TV의 브라운관
 - Cathode Ray Tube의 약자로 전기신호를 전자빔의 작용에 의해 영상이나 도형, 문자 등의 광학적인 상(그림자)으로 변환하여 표시
 - 특수진공관으로 음극선관(CRT)이라고 함
 - OLED(Organic Light Emitting Diodes : 유기발광다이오드)
 - 2개의 전극(Anode 와 Cathode)사이에 삽입된 유기물 층에 가해지는 전기장에 의해 발광하게 되는 자체 발광형 디스플레이 소자
 - 반응속도가 LCD에 비해 1000배 빠름(동영상에 잔상이 없음)
- ⓒ 입력과 출력 공용 장치 (三)
 - 입력과 출력 쌍방의 변환 기능을 모두 가진 대화형 단말
 - TSS(Time Sharing System)이 필수로 요구됨

제1장 단말기 개발검증


h P

	LCD	OLED
특징	• 고휘도(밝기) 표현능력 우수 • 변인(Burn-In) 현상 적음 • 기술 성숙도 높음 • 가격 낮음	 높은 명암비 구현 가능 전력소모가 낮음 빠른 응답속도 와 넓은 시야각 선명한 색감 표현 가능 구조적으로 두께가 얇음 Flexible 디스플레이 구현 가능
구조	B G Filter Liquid Crystal Backlight	W B Colour Refiner

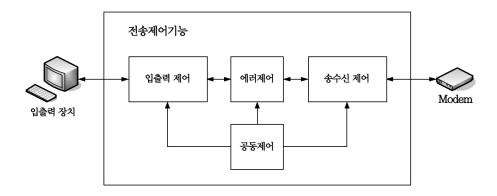
(2) 입·출력 제어부

가. CPU에 의한 방식

- 초기 컴퓨터에서 사용하던 방식
- 입출력 장치가 컴퓨터에 연결되고 고유의 레지스터를 할당받아 동작
- CPU의 리소스가 발생되어 자원이 낭비됨

* 개발자를 향하여 블로그 참조

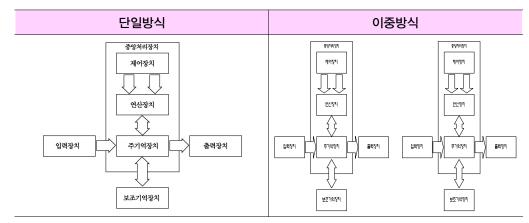
나. DMA(Direct Memory Accsee) 방식


- CPU의 개입 없이 DMA에 의해 제어되는 방식
- CPU의 제어권이 없어 통제가 안되는 문제 발생 →Channel 방식으로 개선

- 다. 채널(Channel)제어기에 의한 방식
 - I/O채널을 사용해 입출력만 담당하는 CPU를 이용함
 - 분리형 입출력(별도 Buffer), 메모리 맵 입출력(자체 메모리)방식이 있음

(3) TCU(Transmission Control Unit)

- 가. 회선 접속부^(≝)
 - 단말기와 물리적인 통신회선을 연결해주는 역할
 - 단말기 내부의 전기적인 신호와 전송회선의 신호레벨을 상호 변환하는 역할
- 나. 회선 제어부
 - 회선 접속부를 통해 수신된 데이터의 문자 조립이나 직 · 병렬 변환 수행
 - 데이터의 버퍼링 기능을 수행 하면서, 부호를 검출하여 에러 제어 수행
- 다. 입·출력 제어부
 - 입력 장치에서 수신된 신호를 검출 후 회선 제어부로 전송 수행
 - 회선제어부에서 수신된 신호를 출력장치로 넘기는 경우에 직접적으로 제어하거나 상태 감시 수행
 - 입·출력 장치에 대한 직접적인 제어 및 상태감시 수행


[TCU의 회선 제어부 와 입·출력 제어부]

(4) 중앙처리장치

- 가. 연산장치(ALU : Arithmetic Logical Unit)
 - 가산기/보수기(뺄셈)을 이용해 판단 및 지정된 연산을 수행하는 장치
 - 전가산기, 레지스터, 보수기, 논리회로 로 구성

t R

- 나. 주기억장치[필][실]
 - 프로그램과 데이터, 연산결과를 기억하는 장치
 - 주기억장치(HDD)와 보조기억장치(ROM, RAM)가 있음
 - ① ROM(Read Only Memory)
 - ⓐ Masked ROM : 프로그램을 입력시켜 놓은 ROM, 사용자가 수정 불가
 - ⓑ Programmable ROM(PROM) : 사용자가 1회 수정 가능한 ROM
 - ⓒ Erasable and Programmable ROM(EPROM) : 프로그램을 '자외선'을 쬐여서 몇 번이고 지워서 다시 사용할 수 있는 ROM
 - ④ Electronics Erasable and Programmable ROM(EEPROM) : EPROM과 약간 다르게
 '전기적인방식' 으로 프로그램을 몇 번이고 지워서 다시 사용할 수 있는 ROM
 - 2 RAM(Random Access Memory)
 - ⑧ Static RAM(SRAM: 정적 램): 메모리 전원을 끄지 않는 한 기억된 내용이 지워지지
 않는 RAM
 - ⓑ Dynamic RAM(DRAM : 동적 램) : 데이터를 '수 ms'마다 기억 시켜야 기억된 내용이 소멸되지 않는 RAM[콘덴서로 재충전(reflash)]
- 다. 중앙처리장치(CPU) 실행 5단계
 - 1단계 : 주기억장치의 명령을 읽음
 - 2단계 : 읽은 명령의 내용을 해석
 - 3단계 : 명령이 참조로 해야 할 오퍼랜드의 저장위치를 계산
 - 4단계 : 오퍼랜드를 주기억장치에서 읽음
 - 5단계 : 가·감·승·제의 연산을 연산장치에서 실행
- 라. 중앙처리장치의 구성형태

I . 개념잡기 기본이론 II. 실전문제풀이 III. 기출문제 (24년~19년)

CBT

기출복원 완벽반영! I.개념잡기기본이론

정보통신(산업)기사 시험대비

개념과 기출을 한번에!

정보통신네트워크

편저 박종규 정보통신기술사

2025

74271

수험

가이드

정보통신(산업)기사 _ 정보전송일반

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

5G

2. 시험과목

	정보통신기사	정보통신산업기사
필기	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 정보시스템운용	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 컴퓨터일반 및 정보설비기준
	5. 컴퓨터일반 및 정보설비기준	
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사	
필기	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,	
	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)	
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간	
실기	• 검정방법 : 필답형 : 주관식 필기 15~20문제		
	• 시험기간 : 2시간 30분		

4. 합격기준

- 필기 : 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
- 실기 : 100점을 만점으로 하여 60점 이상

5. 응시자격 및 경력인정 기준

- 산업기사 취득 후 + 실무경력 1년
- 기능사 취득 후 + 실무경력 3년
- 동일 및 유사 직무분야의 다른 종목 기사 등급 이상의 자격 취득자
- 대졸(관련학과)
- 전문대졸(3년제/관련학과) 후 + 실무경력 1년
- 전문대졸(2년제/관련학과) 후 + 실무경력 2년
- 기술훈련과정 이수자(기사수준)
- 기술훈련과정 이수자(산업기사수준) 이수 후 + 실무경력 2년
- 실무경력 4년 등

수도스터디 _ sudostudy.net

GUIDE

<mark>들어가는</mark> 정보

순서

5G .

정보통신(산업)기사 - 정보통신네트워크

:5G

CHAPTER 01 네트워크 기본구성

01 기본설계	10
1. 네트워크구축 설계	10
2. 네트워크 분류 및 특징 ······	11
3. 통신 프로토콜 기능 및 특징 ······	14
• 실전 핵심 문제	32
02 실시설계	36
1. 흐름제어, 에러제어, 혼잡제어	36
2. 흐름제어	37
3. 오류제어 및 혼잡제어	39
4. MAC(Media Access Control)	41
• 실전 핵심 문제	44
03 TCP/IP프로토콜 ······	50
1. 인터넷(IP) 주소체계	50
2. 서브넷팅(CIDR, VLSM)	52
3. IP계층 응용 프로토콜 ······	58
4. IP주소 자원관리 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	61
• 실전 핵심 문제 ······	64
04 이중화구성 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	78
1. 전달계층 프로토콜 ······	78
• 실전 핵심 문제 ·······	82
05 백업 ·····	88
1. 응용 프로토콜 ·····	88
2. 백업 및 장애검출 프로토콜 ······	91
• 실전 핵심 문제 ***********************************	94

C)

CONTENTS

CHAPTER 02 근거리통신망(LAN) 설계	Ð
01 아키텍쳐 설계	100
1. 이더넷 개념 ······	100
2. L2 스위치 구성 및 동작 ······	108
3. L3 스위치 구성 및 동작 ······	109
• 실전 핵심 문제 ······	110
02 VLAN 및 Private-VLAN구성 ······	118
1. VLAN 개념 ······	118
2. VLAN 구성 및 동작 ······	120
• 실전 핵심 문제 ······	122
03 라우팅 프로토콜	128
1. 라우팅 개념 ······	
2. 라우팅 프로토콜 ·····	130
• 실전 핵심 문제 ·······	
04 장비선정 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	140
1. 유선 LAN시스템 구성(CSMA/CD)	140
2. 무선 LAN 시스템 구성(CSMA/CA)	141
• 실전 핵심 문제	
05 통신보안기술[산업기사]	152
1. 통신보안기술	152
2. 공격(해킹)과 방어(보안) ······	
3. 네트워크 보안기술 ······	
• 싴전 핵심 문제 ······	

5G

수도스터디 _ sudostudy.net

들어가는 정보통신(산업)기사 _ 정보통신네트워크

5G .

순서

CHAPTER 03 구내통합설비 설계

01 구내교환설비 설계	166
1. 전화망(교환시스템, 구내통신망 등) ······	166
2. 패킷교환망	169
3. 인터넷 통신망(xDSL, FTTx, VRRP, GLBP)	173
4. 전송장비(SDH/SONET, MSPP, WDM, OTN 등)	179
• 실전 핵심 문제 ······	186

C)

D

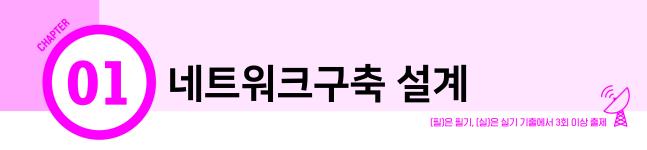
CHAPTER 04 이동통신서비스 시험

01	기능시험 ·····	194
	1. 무선통신망의 개요 및 구조 ······	194
	2. 이동통신망의 개요 및 구조 ······	199
	3. 위성통신망의 개요 및 구조 ······	203
	• 실전 핵심 문제	206
02	연동시험 ······	216
	1. IPTV, VoIP, VoD, OTT ·····	216
	2. SDN, NFV	219
	3. IoT(Internet of Thing), Smart City	221
	• 실전 핵심 문제 ······	224

부록 01 정보통신기사 기출문제 🛛

• 2019년도 정보통신기사 정보통신네트워크	232
• 2020년도 정보통신기사 정보통신네트워크	241
• 2021년도 정보통신기사 정보통신네트워크	250
• 2022년도 정보통신기사 정보통신네트워크	259
• 2023년도 정보통신기사 정보통신네트워크	268
• 2024년도 정보통신기사 정보통신네트워크 ······	277

부록 02 정보통신산업기사 기출문제


2022년도 정보통신산업기사 정보통신네트워크	288
2023년도 정보통신산업기사 정보통신네트워크	297
2024년도 정보통신산업기사 정보통신네트워크	306

01 기본설계 02 실시설계 03 TCP/IP프로토콜 04 이중화구성 05 백업

수도스터디 _ sudostudy.net

01 > 기본설계

01 네트워크 기본구성

통신망(Telecommunication Network)이란 정보를 전달하기 위한 구성으로 단말기, 교환기 (전송장비), 전송망으로 구성됨

단말기(컴퓨터)	교환기(전송장비)	전송망
사람과 통신망 사이의	경로설정 및 중계(전송)하는	데이터를 신호로 전달하는
Interface 장비	장비	매체

(1) 네트워크(통신망) 구축시 필요기술[필]실]

- 송 수신을 위한 두 시스템 간에 정확하고 신뢰성 있는 정보전송이 가능 하도록 상호간에 지켜 야 할 제반 사항을 규정한 통신 프로토콜 필요
- 서로 다른 통신망을 접속시키는 통신망간 접속 기술 필요
- •네트워크(통신망)의 효율적인 운용 및 보전 관리를 위한 운영 · 관리 기술 필요

※ 쉽게 이해하는 네트워크 교재 참조

02 네트워크 분류 및 특징

- (1) 네트워크 분류(규모)
 - 가. 근거리 정보통신망 (LAN : Local Area Network)

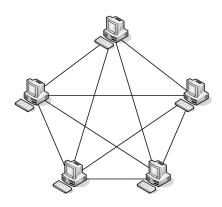
수[m]이내의 지역에 분산배치된 각종 단말 장치 사이에서 고속(Gbps)으로 통신을 하기 위한 통신망

나. 중거리 정보통신망 (MAN : Metropolitan Area Network)

네트워크(통신망)의 서비스 영역은 약 수[km]내를 대상으로 한 통신망

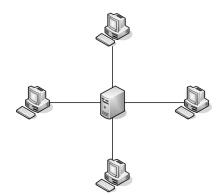
다. 원거리 정보통신망 (WAN : Wide Area network)

광역통신망으로 다국적 기업 간 또는 기관 간의 LAN을 상호 연결시킨 형태의 통신망으로 서비스 영역은 약 수백[km] 이내로 한 통신망


(2) 네트워크 분류 (구성형태)^{[플][실]}

가. 그물 형(Mesh형)

- 그물 형은 네트워크(통신망)의 모든 단말들을 회선(Link)로 연결한 형태
- 모든 단말 간 개별적인 통신회선으로 연결하기 때문에 비용이 많이 발생
- 또한, 각각의 단말들은 다수의 통신 포트들을 가지고 있어야 함
- 각 단말 간 데이터 전달 신뢰성이 매우 높은 장점이 있음

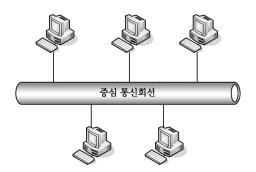

• 그물 형 네트워크 특징

- ① 근거리 통신망(LAN) 보다는 광대역 통신망(WAN)에 많이 사용됨
- ② 한 회선의 장애발생시 우회 경로가 있어 위회 하여 통신 가능
- ③ 단말(노드)간 전송 신뢰성이 가장 우수한 방식
- ④ 가장 많은 통신회선이 필요하며, 통신망의 구축비용이 가장 높음
- ⑤ 그물형 통신망의 회선 수는 $\frac{n(n-1)}{2}$ (단말기 개수 : n)

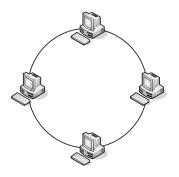
- 나. 스타 형(Star형)
 - 전송되는 데이터를 센터의 컴퓨터(단말)나 교환기가 제어하고 중앙의 컴퓨터나 교환기에 모든 단말들이 일대일 또는 일대다로 연결된 형태
 - 소규모 근거리 통신망(LAN) 구축에 적합함
 - 통신회선의 융통성의 뛰어남
 - 스타 형 네트워크 특징
 - ① 단말 고장시 발견 쉽고 유지보수가 용이함
 - ② 단말기마다 전송속도를 다르게 설정할 수 있음
 - ③ 또한, 단말의 추가 및 삭제가 용이함
 - ④ 단, 중앙 컴퓨터(단말)나 교환기의 장애 발생 시 전체기능이 정지됨
 - ⑤ 단말 증가에 따라 통신회선(Link)수가 늘어남

다. 트리 형(Tree형)

- 트리 형은 하나의 단말에서 여러 개의 통신회선(Link)이 분배되어 나가는 형태
- 중앙에 단말을 두고 일정 지역의 단말까지는 하나의 통신회선으로 연결되고 일정 지역의 단말에서 다시 그 지역의 다수의 단말과 연결됨
- 마치 그물(Mash) 형처럼 하나의 단말에 여러 개의 단말을 연결되는 방식
- 네트워크(통신망)을 확장할 때 가장 가까운 단말에 연결하기 때문에 통신망의 확장 및 구축 이 용이함
- 트리형 네트워크 특징
 - ① 근거리 통신망(LAN) 보다는 광대역 통신망(WAN)에 주로 사용
 - ② 통신망의 추가 및 확장이 용이함
 - ③ 상위 통신망 장애 발생 시 하위 통신망 단말들도 통신이 중단


t RI

④ 통신망의 확장이 많아질 수록 트래픽이 한곳에 집중될 수 있음⑤ 분산처리 시스템 구성이 가능함


라. 버스 형(Bus형)

- 버스 형은 하나의 케이블에 모든 단말기들이 연결되는 형태
- 각 단말에서 전송되는 데이터는 방송(브로드캐스트)형태로 전송
- 모든 단말은 수신정보의 특별한 식별번호에 의해 해당하는 정보만 수신
- 통신망 구조가 간단하고, 각 단말의 추가 제거가 용이 함
- 단, 중심 케이블 양 끝에 '바운딩 현상'을 막기 위해 '터미네이터' 장치 부착
- 버스형 네트워크 특징
 - ① 모든 단말들이 하나의 통신회선(Link)을 공유하므로 구축비용이 저렴
 - ② 단말기 고장 시 전체 통신망에 영향을 주지 않아 신뢰성이 높음
 - ③ 모든 단말이 통신회선 상에 전송되는 데이터를 수신할 수 있어 데이터의 비밀 보장이 어려움
 - ④ 통신회선에 장애 발생 시 전체 통신망에 영향을 줄수 있음
 - ⑤ 통신회선의 길이에 제한을 받으며 주로 근거리 통신망(LAN)에 사용

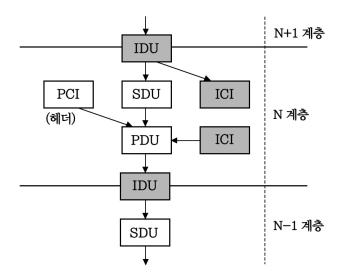
- 마. 링형(Ring형)
 - 각각의 단말기들이 서로 이웃하는 것끼리만 직접 또는 중계를 통해 연결
 - 전송 데이터는 방송(브로드캐스트)형태로 전송되므로 각 단말마다 공평한 통신 서비스를 수행할 수 있음
 - 링형 네트워크 특징
 - ① 통신회선과 단말기 고장 시 발견이 용이 함
 - ② 새로운 단말의 추가 또는 기존 단말의 삭제 시 통신회선을 절단해야 함
 - ③ 단말 고장이나 통신회선 장애 시 전체 통신망에 영향을 주므로 우회기능과 통신회선의 이중화 등이 필수임
 - ④ 각 단말에서 데이터 전송이 전송지연이 발생할 수 있음
 - ⑤ 통신회선의 길이에 제한을 받음

03 통신 프로토콜 기능 및 특징(필)실)

- 서로 다른 장비들 간에 통신망(네트워크)를 통해 서로 통신(의사소통)을 할 수 있는 것이 프로 토콜(Protocol) 임
- 물리적 또는 지리적으로 멀리 떨어져 있는 각각의 시스템들과 통신(의사소통)을 하기 위한 필수 조건이며, 정보통신망이 성립되기 위한 가장 기본적인 요소임
- (1) 프로토콜의 정의
 - 서로 다른 시스템(단말)간에 신뢰성 있는 정보를 전송하기 위하여 미리 약속된 절차 및 규정 (통신 규약)
 - 국제표준화 단체 ISO(International Standards Organization), IEEE(Institute of Electrical and Electronics Engineers)등이 대표적임

(2) 프로토콜(Protocol)의 기본 구성요소^[픨]

- 원격지 통신 시스템 간에 신뢰성 있는 정보를 전달하기 위한 기본 요소
- 프로토콜해서 정하는 기본요소로 '데이터의 형식과 전기적인 신호의 형태', '송 수신 시스템 간의 정보 전송시점과 수신 시점', '수신된 정보의 종단점을 맞추는 동기화' 기능 수행 과 전송 흐름의 양을 조절하는 흐름제어 방법 등 정의
- 프로토콜 속에 포함 시켜야 하는 3요소는 '구문, 의미, 타이밍' 임
- 가. 구문(Syntax)


전달되는 데이터의 형식, 부호화, 신호레벨 등을 규정

나 의미(Semantic)

정확하고 효율적인 정보 전송을 위한 객체간의 조정과 에러 제어 등을 규정

다. 순서(Timing)

접속되는 개체간의 통신 속도의 조정과 메세지의 순서 제어 등을 규정

SDU: Service Data Unit

- PCI: Protocol Control Information
- PDU: Protocol Data Unit
- IDU: Interface Data Unit
- ICI: Interface Control Information

정보통신(산업)기사사 합니비 개념과 기출을 한번에! 거유되었는 및 정부 전원 171 문 지 ()

CBT 기출복원 완벽반영!

편저 박종규 정보통진기술사

2025

I . 개념잡기 기본이론 II. 실전문제풀이 III. 기출문제 (24년~19년)

수험

가이드

정보통신(산업)기사 _ 정보전송일반

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

5G

2. 시험과목

	정보통신기사	정보통신산업기사
필기	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 정보시스템운용	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 컴퓨터일반 및 정보설비기준
	5. 컴퓨터일반 및 정보설비기준	
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사	
	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,	
필기	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)	
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간	
시기	• 검정방법 : 필답형 : 주관식 필기 15~20문제		
실기	• 시험기간 : 2시간 30분		

4. 합격기준

- 필기 : 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
- 실기 : 100점을 만점으로 하여 60점 이상

5. 응시자격 및 경력인정 기준

- 산업기사 취득 후 + 실무경력 1년
- 기능사 취득 후 + 실무경력 3년
- 동일 및 유사 직무분야의 다른 종목 기사 등급 이상의 자격 취득자
- 대졸(관련학과)
- 전문대졸(3년제/관련학과) 후 + 실무경력 1년
- 전문대졸(2년제/관련학과) 후 + 실무경력 2년
- 기술훈련과정 이수자(기사수준)
- 기술훈련과정 이수자(산업기사수준) 이수 후 + 실무경력 2년
- 실무경력 4년 등

수도스터디 _ sudostudy.net

GUIDE

들어가는 **순서**

5G .

정보통신(산업)기사 _ 컴퓨터일반 및 정보설비기준

CHAPTER 01 하드웨어기능별 설계환경설정

5G

01 블록도 작성	10
1. 컴퓨터의 기본구조 ······	10
• 실전 핵심 문제	18

C)

C

 \mathcal{O}

CHAPTER 02 전자부품 S/W개발

01 OS환경 분석 ······	· 28
1. 시스템 프로그램의 이해 ······	· 28
2. 프로세스(Process)의 정의 ·······	• 34
3. 파일시스템 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· 36
• 실전 핵심 문제	· 38

CHAPTER 03 구내통합설비 설계

01	네트워크 운용	50
	1. 인터넷(IP) 주소체계	50
	2. 서브넷팅(CIDR, VLSM)	52
	3. IP계층 응용 프로토콜 ······	58
	4. IP주소 자원관리	60
	5. 전달계층 프로토콜 ······	63
	6. 응용 프로토콜 ·····	66
	7. 백업 및 장애검출 프로토콜 ······	69
	8. 이더넷 개념	72

a

Ce,

Cay

9. L2 스위치 구성 및 동작 ······	79
10. L3 스위치 구성 및 동작 ······	81
• 실전 핵심 문제	82

CHAPTER 04 보안운영관리

5G

01	기반인프라 장비보안 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	96
	1. 해킹 및 보안	96
	2. 기술적보안 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	101
	3. 네트워크 스캐닝 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	104
	4. 네트워크 보안기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	106
	• 실전 핵심 문제	114

CHAPTER 05 분석용데이터 구축

CHAPTER 06 서버구축

01	서버가상화 구축	130
	1. 가상화(Virtualization) ······	130
	2. 서버부하 분산방식	134
	3. 하이퍼바이저가상화(서버 전가상화 와 반가상화 , 컨테이너 가상화)	135

수도스터디 _ sudostudy.net

들어가는 정보통신(산업)기사 - 컴퓨터일반 및 정보설비기를

02 CI	loud서비스 활용 ·······	136
1.	. 클라우드컴퓨팅(Cloud computing) ······	136
2.	. 클라우드컴퓨팅 분류 ·····	136
3.	. 클라우드컴퓨팅 보안	137
4.	. WEB, WAS ·····	138
•	실전 핵심 문제	140

CHAPTER 07 서버구축

순서

01 정보통신관련 법규 ······ 144 02 구내통신환경분석 ······· 166 1. 방송통신설비의 기술기준에 관한 규정(용어, 일반조건, 면적/회선수) ………………………… 166 2. 접지설비·구내통신설비·선로설비 및 통신공동구에 대한 기술기준 ······· 171 (용어, 보호기, 접지, 선로설비, 관로, 맨홀) 3. 지능형 홈네트워크 설비 설치 및 기술기준(용어, 설비, 설치기준) …………………………………………… 176 03 지능형 영상관제 법령 ······ 192

 04 설계단계의 감리업무
 196

 1. 정보통신공사업법 제2장 공사의 설계 · 감리
 196

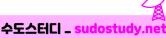
 2. 정보통신공사의 종류
 197

 05 설계도서 분석
 198

 1. 설계대상공사 및 범위
 198

 2. 감리대상공사 및 감리원 배치제도
 198

 3. 정보통신공사 설계 기준 및 산출물
 201


 4. 정보통신 감리업무
 202

 5. 정보통신공사 감리업무 수행기준(2019)
 202

 • 실전 핵심 문제
 206

부록 01 정보통신기사 기출문제

• 2019년도 정보통신기사 컴퓨터일반 ······	212
• 2019년도 정보통신기사 정보설비기준 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	217
• 2020년도 정보통신기사 컴퓨터일반 ·····	223
• 2020년도 정보통신기사 정보설비기준	229
• 2021년도 정보통신기사 컴퓨터일반 ······	235
• 2021년도 정보통신기사 정보설비기준	241
• 2022년도 정보통신기사 컴퓨터일반 ······	247
• 2022년도 정보통신기사 정보설비기준	253
• 2023년도 정보통신기사 컴퓨터일반 ·····	258
• 2023년도 정보통신기사 정보설비기준	265
• 2024년도 정보통신기사 컴퓨터일반 ······	269
• 2024년도 정보통신기사 정보설비기준	275

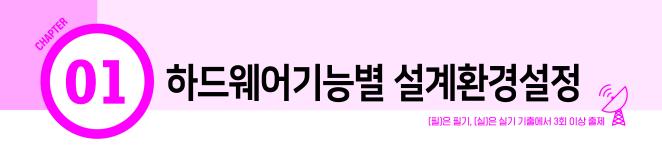
5G -

순서

들어가는 정보통신(산업)기사 - 컴퓨터일반 및 정보설비기준

부록 02 정보통신산업기사 기출문제

:5G


• 2019년도 정보통신산업기사 컴퓨터일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	282
• 2019년도 정보통신산업기사 정보설비기준	288
• 2020년도 정보통신산업기사 컴퓨터일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	294
• 2020년도 정보통신산업기사 정보설비기준	300
• 2021년도 정보통신산업기사 컴퓨터일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	306
• 2021년도 정보통신산업기사 정보설비기준	312
• 2022년도 정보통신산업기사 컴퓨터일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	318
• 2022년도 정보통신산업기사 정보설비기준	324
• 2023년도 정보통신산업기사 컴퓨터일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	328
• 2023년도 정보통신산업기사 정보설비기준	336
• 2024년도 정보통신산업기사 컴퓨터일반 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	341
• 2024년도 정보통신산업기사 정보설비기준 ······	347

C)

하드웨어 기능별 설계환경설정

01 블록도 작성

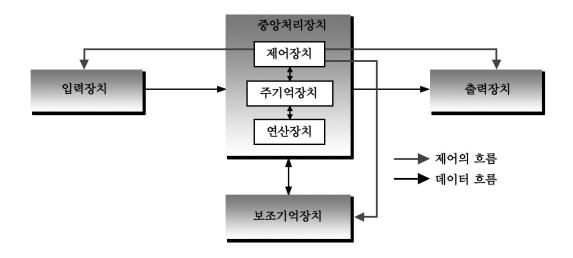
수도스터디 _ sudostudy.net

01 블록도 작성

01 컴퓨터의 기본구조

중앙처리장치	보조 기억장치	입·출력 장치
CPU	RAM, ROM	키보드, 프린터

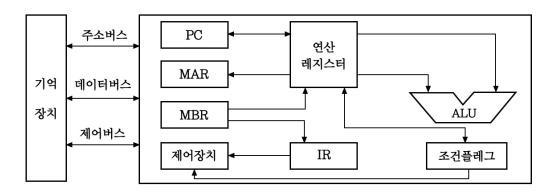
(1) 입·출력장치


각종 자료들을 컴퓨터 내부로 읽어 들이거나 작업한 결과를 화면이나 그 밖의 장치를 통해 표시함

(2) 중앙처리장치(CPU: Central Process Unit)

인간의 두뇌에 해당하며 제어장치와 연산장치, 주기억장치를 중앙처리장치(CPU)의 3대요소 라고 하며, 각종 프로그램을 해독한 내용에 따라 명령(연산)을 수행하고 컴퓨터 내의 각 장치들 을 삭제, 지시, 감독하는 기능을 수행

(3) **보조 기억장치**

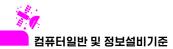

주 기억장치의 한정된 기억용량을 보조하기 위해 사용하는 것이며 전원이 차단되어도 기억된 내용이 상실되지 않음

(4) 중앙처리장치의 구성 요소와 특징

가. 중앙처리장치(CPU : Central Process Unit)

인간의 두뇌와 같은 역할을 담당하는 컴퓨터의 핵심 장치이며 프로그램을 해독하여 실제연 산 및 논리적인 판단을 수행하고, 컴퓨터의 각 장치들을 지시·감독함

① 제어장치(Control Unit)


- 컴퓨터를 구성하는 모든 장치가 효율적으로 운영되도록 통제하는 장치
- 주기억 장치에 저장되어 있는 프로그램의 명령들을 차례대로 수행하기 위하여 기억장 치와 연산장치 또는 입력장치
- · 출력장치에 제어 신호를 보내거나 이들 장치로부터 신호를 받아서 다음에 수행할 동작
 을 감시, 감독하는 장치

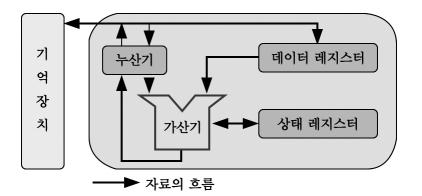
② 제어장치의 기능

- 주기억 장치에 기억되어 있는 프로그램의 명령들을 해독
- 해독된 명령에 따라 각 장치(입출력, 기억, 연산)들에 신호를 보내어 유기적으로 결합시 켜 데이터를 처리함
- 처리된 결과를 기억장치에 기억시키고, 내용을 출력함
- 프로그램을 실행하는 도중 사고가 발생하면 동작을 잠시 중단하고 사고가 치료되면 다
 시 계속 프로그램을 수행함
- ③ 메모리 번지 레지스터 (MAR: memory address register)

주기억 장치 내의 명령이나 자료가 기억되어 있는 주소를 보관함

④ 기억 버퍼 레지스터 (MBR : memory buffer register) 번지 레지스터가 보관하고 있는 주기억 장치 내의 주소에 기억된 명령이나 자료를 읽어 들여 보관함

5 명령 레지스터 (IR: instruction register)


실행할 명령을 기억 레지스터로부터 받아 임시 보관하며, 명령부에는 실행할 명령 코드 가 기억되어 있고 이 명령 코드는 명령 해독기로 보내져 해독됨

- ⑥ 프로그램 카운터(program counter : PC) CPU가 다음에 처리해야 할 명령이나 데이터의 메모리 주소를 지시함
- ⑦ 명령 해독기 (ID:instruction decoder)

명령 레지스터의 명령부에 보관되어 있는 명령을 해독하며 필요한 장치에 신호를 보내어 동작하도록 함

나. 연산장치(ALU : Arithmetic Logical Unit)

컴퓨터가 처리하는 모든 연산활동을 수행하는 장치이며, 제어장치의 지시에 따라 산술연산, 논리연산, 자리 이동 및 크기의 비교 등을 수행하는 장치임

- ① 누산기(accumulator : ACC) : ALU에서 처리한 결과를 저장
- ② 데이터 레지스터(data register) : 연산해야 할 자료를 보관
- ③ 상태 레지스터(status register) : 연산결과 표출에 사용되는 레지스터
- ④ 스택 포인터(stack pointer : SP) : 레지스터의 내용이나 프로그램 카운터의 내용을 일시 기억시키는 곳을 스택이라 함
- 다. 주기억장치(Main Memory Unit)
 - 수행되고 있는 프로그램과 이의 수행에 필요한 데이터를 기억하는 장치
 - 데이터를 저장하고 인출하는 데 드는 시간이 빨라야 하며, 보조기억장치 보다 기억용량 대비 비용이 고가임
 - ROM(read only memory)과 RAM(random access memory)이 주기억장치 임

- ① 롬(ROM: Read Only Memory)
 - 주로 시스템이 필요한 내용(ROM BIOS)을 제조 단계에서 기억시킨 후 사용자는 오직 기억된 내용을 읽기만 하는 장치(변경이나 수정 불가)임
 - 전원공급이 중단되어도 기억된 내용을 그대로 유지하는 비휘발성 메모리
 - 롬의 종류 : Masked ROM, PROM(Programmable ROM), EPROM(Erasable PROM), EEPROM(Electrical EPROM) 이 있음
- ② 램(RAM: Random Access Memory)
 - 일반적인 PC의 메모리로 현재 사용중인 프로그램이나 데이터를 기억함
 - 전원 공급이 끊기면 기억된 내용을 잃어버리는 휘발성 메모리임
 - 각종 프로그램이나 운영체제 및 사용자가 작성한 문서 등을 불러와 작업할 수 있는 공간 으로 주기억 장치로 사용되는 DRAM(dynamic RAM)과 캐시 메로리로 사용되는 SRAM(static RAM)의 두 종류가 있음

구 분	동적 램(DRAM:Dynamic RAM)	정적 램(SRAM:Static RAM)
구성	대체로 간단 (MOS 1개 + Capacitor 1개로 구성)	대체로 복잡 (플립프롭(flip-flop)으로 구성)
용량	대용량	소용량
특 징	 기억한 내용을 유지하기 위해 주기 적 인 재충전(Refresh)이 필요한 메모리 소비전력이 적음 SRAM보다 집적도가 크기 때문에 대 용량 메모리로 사용되나 속도가 느림 	 DRAM보다 집적도가 작음 재충전(Refresh)이 필요없는메모리 DRAM보다 속도가 빨라 주로 고속 의 캐시메모리에 이용됨

라. 보조 기억 장치

주기억장치를 보조해주는 기억장치로 대량의 데이터를 저장할 수 있으며 주기억장치에 비 해 처리속도는 느리지만 반영구적으로 저장이 가능한 기억장치를 말함

① 자기 테이프(magnetic tape)

기억된 데이터의 순서에 따라 내용을 읽는 순차적 접근만 가능하며 속도가 느려 데이터 백업용으로 사용, 가격이 저렴하여 보관할 데이터가 많은 대형 컴퓨터의 보조기억장치에 사용

② 카트리지 테이프(cartridge tape)

자기 테이프를 소형으로 만들어 고정된 집에 넣어서 만든 형태

③ 자기 디스크(magnetic disk)

데이터의 순차접근과 직접 접근이 모두 가능하며, 다른 보조기억장치에 비해 비교적 속 도가 빠르므로 보조기억장치로 사용됨

- ④ 하드 디스크(hard disk)
 - 컴퓨터의 외부 기억장치로 사용되며 세라믹이나 알루미늄 등과 같이 강성의 재료로 된
 원통에 자기 재료를 바른 자기기억장치
 - 직접 접근 기억 장치로 기억 용량은 비교적 크고 간편하지만, 디스크 팩을 교환할 수 없어 해당 디스크의 기억 용량 범위에서만 사용함
- ⑤ 플로피 디스크(floppy disk)

자성 물질로 입혀진 얇고 유연한 원판으로 개인용 컴퓨터의 가장 대표적인 보조기억 장치 로서 적은 비용과 휴대가 간편함

- ⑥ 자기 드럼(magnetic drum) 자성재료로 피막된 원통형의 기억매체로 이 원통을 자기헤드와 조합하여 자기기록을 하 는 자기 드럼 기억장치로 구성됨
- 마. 메모리의 구조
 - ① 캐시 기억장치(cache Memory) 캐시 메모리는 CPU와 주기억장치 사이에 위치하여 두 장치의 속도 차이를 극복하기 위해 CPU에서 가장 빈번하게 사용되는 데이터나 명령어를 저장하여 사용되는 메모리로 주로 SRAM을 사용함
 - ② 가상 기억장치(virtual memory)
 하드디스크와 같은 보조기억장치의 일부분을 마치 주기억장치처럼 사용하는 공간을 말함
 - ③ 연관 기억장치(associative Memory)

검색된 자료의 내용 일부를 이용하여 자료에 직접 접근할 수 있는 기억장치

(5) 입력장치

- 가. 화면이용 입력 장치
 - ① 키보드(Keyboard) : 컴퓨터에 가장 많이 사용하는 입력 장치
 - ② 마우스(Mouse): 볼 마우스나 휠 마우스 이외에 광학 마우스, 트랙볼 마우스 등이 있으며 키보드처럼 컴퓨터에서 반드시 필요한 입력 장치
 - ③ 스캐너 : 사진이나 그림을 컴퓨터로 읽어 들이는 입력장치

fi 🖭

- ④ 디지털 카메라 : 렌즈를 통하여 들어온 빛을 CCD라는 반도체를 이용하여 전기적 신호로 바꾸어 메모리에 저장하는 장치
- ⑤ 라이트 펜(Light Pen) : 펜에 달린 센서에 의해 좌표의 선을 그리거나, 점을 찍어 그림을 그려 그래픽 작업에 이용하는 입력 장치
- ⑥ 터치스크린(touch screen) : 모니터를 접촉함으로써 컴퓨터와 교신할 수 있는 입력장치

나. 광학적 입력장치

- 카드 판독기(Card Reader): 카드 천공기로 천공된 카드는 입력시킬 카드를 쌓아 놓는 곳(호퍼: hopper)에서 판독기를 거쳐 판독이 끝난 카드가 보내지는 곳 (스태커: staker)에 모여지면서 천공된 숫자나 문자를 판독하는 장치
- ② 광학 마크 판독기(OMR : Optical Mark Reader) : 특수한 재료가 포함된 잉크나 연필로 표시 한 데이터를 광학적으로 판독하는 장치
- ③ 광학 문자 판독기(OCR : Optical Character Reader) : 특정한 모양의 글자를 종이에 인쇄하 여, 그 인쇄된 글자를 광학적으로 판독하는 장치
- ④ 디지타이저(Digitizer): 그림, 챠트, 도표, 설계도면 등의 아날로그 측정값을 읽어 들여 이 를 디지털 화하여 컴퓨터에 입력시키는 장치
- ⑤ 바코드 판독기(Bar Code Reader) : 슈퍼마켓이나 서적 등에서 볼 수 있는 입력 장치로 상품에 인쇄된 바코드를 광학적으로 읽어 들여, 신뢰성 높은 자료의 입력을 가능하게 함

다. 자기 입력장치

- ① 자기 디스크(Magneticdisk) : 데이터의 순차접근과 직접 접근이 모두 가능하며, 다른 보조 기억장치에 비해 비교적 속도가 빠르므로 보조기억장치로 널리 사용
- ② 자기 테이프(Magnetic tape): 기억된 데이터의 순서에 따라 내용을 읽는 순차적 접근만 가능하며 속도가 느려 데이터 백업용으로 사용, 가격이 저렴하여 보관할 데이터가 많은 대형 컴퓨터의 보조기억장치에 주로 사용
- ③ 자기 잉크 문자 판독기(MICR: Magnetic Ink Character Reader) : 자성을 띤 특수한 잉크로 기록된 숫자나 기호를 직접 판독하는 장치

(6) 출력 장치

- ① 모니터 : 주기억장치의 자료를 모니터 화면에 문자나 숫자, 도형 등으로 나타내 주는 장치로서 음극선관(CRT:cathode ray tube), 액정 화면(LCD:liquid crystal display), 플라즈마 디 스플레이(PDP:plasma display panel) 방식 등 이 있음
- ② 프린터: 컴퓨터에서 처리된 결과를 용지에 활자로 인쇄하여 보여주는 장치이며 도트 매트릭
 스 프린터, 잉크젯 프린터, 레이저 프린터 등이 있음