2026

정보통신(신업)기사 시험대비

개념과 **기출**을 한번에!

정보전송일반

· 2026년 출제기준 개정내용 완벽 반영!

CBT기출복원문제 수록

- Ⅰ. 개념잡기 기본이론
- Ⅲ. 실전문제풀이
- [[]. **기출문제** (25년 ~ 19년)

편저 **박종규** 정보통진기술사

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

2. 시험과목

	정보통신기사	정보통신산업기사
	1. 정보전송일반	1. 정보전송일반
	2. 정보통신기기	2. 정보통신기기
필기	3. 정보통신네트워크	3. 정보통신네트워크
	4. 정보시스템운용	4. 컴퓨터일반 및 정보설비기준
	5. 컴퓨터일반 및 정보설비기준	
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사
	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,
필기	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간
٨١٦١	• 검정방법 : 필답형 : 주관식 필기 15~20문제	
실기	• 시험기간 : 2시간 30분	

4. 합격기준

• 필기: 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상

• 실기 : 100점을 만점으로 하여 60점 이상

CHAPTER U1 성모통신시스템 구축	"2
01 기술사항 검토	10
1. 변조(Modulation)의 개념 ······	10
2. 변조(Modulation)의 목적 ······	11
3. 변조(Modulation)의 종류 ······	11
• 실전 핵심 문제 ·····	30
02 회로시뮬레이션	40
1. 발진회로 ·····	40
2. 필터회로 ·····	47
3. 논리회로	48
● 실전 핵심 문제 ·····	62
CHAPTER 02 정보통신선로 검토	(m)
01 유선선로설비 ····································	
1. 전송매체의 종류 ·····	76
• 실전 핵심 문제 ·····	94
02 전파의 전파 특성검토	106
1. 전파(Wave)의 전파(Propagation) 개념 ······	106
2. 전자파 이론	108
• 실전 핵심 문제 ·····	114

CHAPTER 03 통신선로 시설 및 측정 01 통신선로 시설 분류 124 1. 건축물 구내통신 선로시설 124 2. 구내통신선로시설의 설치 기술기준 127 3. 구내통신선로케이블의 국제규격 129 02 광케이블 측정 130 1. 접속손실 측정 130

• 실전 핵심 문제 ······ 136

CHAPTER 04 네트워크 품질시험	
01 시험방법	144
1. 신호의 형태 ···································	
2. 시스템의 개념 ·····	145
3. 에너지신호와 전력신호 ·····	146
4. 신호크기 RMS 및 전송단위 dB ······	147
• 실전 핵심 문제 ·····	152
02 단위시험	154
1. 전송속도	154
2. 채널용량	158

03	3. 전송 장애 4. 에러검출 및 정정(에러제어) • 실전 핵심 문제 종합시험 1. 단방향 및 양방향 통신, 직 • 병렬 전송 2. 동기방식 및 비동기방식 전송 • 실전 핵심 문제	161176190190192	
C	HAPTER 05 정보통신시스템 장비발주 ("기사"만 해당)		
N 1	장비규격검토	202	
UI	1. 교환방식 과 듀플렉스(FDD와 TDD) ··································		
	2. 다중화기술 ····································		
	3. 다중접속기술 ····································		
	4. 전송프레임 기본구조		
	• 실전 핵심 문제 ······		
02	전파환경측정 ····································	234	
	1. 대역확산기술		
	2. 다중경로채널 및 페이딩		
	3. 다중입출력 안테나기술	243	

부록 01 정보통신기사 기출문제	
• 2019년도 정보통신기사 정보전송일반····································	254
• 2020년도 정보통신기사 정보전송일반 ····································	263
• 2021년도 정보통신기사 정보전송일반 ····································	272
• 2022년도 정보통신기사 정보전송일반 ·········	281
• 2023년도 정보통신기사 정보전송일반······	
• 2024년도 정보통신기사 정보전송일반	299
• 2025년도 정보통신기사 정보전송일반	
THE MUCH DISCRIP	61
부록 02 정보통신산업기사 기출문제	2
• 2019년도 정보통신산업기사 정보전송일반 ····································	···· 318
• 2020년도 정보통신산업기사 정보전송일반 ·······	
• 2021년도 정보통신산업기사 정보전송일반 ····································	
• 2022년도 정보통신산업기사 정보전송일반 ······	
• 2023년도 정보통신산업기사 정보전송일반 ······	
• 2024년도 정보통신산업기사 정보전송일반 ····································	
• 2025년도 정보통시산업기사 정보저속익바 ······	

01 기술사항검토

02 회로시뮬레이션

정보통신시스템 구축

(필)은 필기, (실)은 실기 기출에서 3회 이상 출제

01 기술사항 검토

① 변조(Modulation)의 개념

신호 정보를 전송 매체의 채널 특성에 맞게끔 신호(정보)의 세기나 변위, 주파수, 위상 등을 적절한 파형 형태로 변환하는 것. (주파수축에서 Frequency Shift)

연속 아날로그 변조	연속 디지털 변조	펄스 아날로그 변조	펄스 디지털 변조
AM	ASK	PAM	PNM
FM ^{(픨)(실)}	FSK	PWM	PCM ^{(필)(실)}
PM	PSK	PPM	

(1) AM(진폭변조)

- 가. DSB(양측파대 변조)
- 나. SSB(단측파대 변조)
- 다. VSB(잔류측파대 변조)

(2) PSK(위상편이변조)

- 가. DPSK(차동 위상 편이변조)
- 나. MSK(Minimum Shift Keying)

(3) PCM(펄스코드변조)

- 가. DM(Delta Modulation)
- 나. DPCM(차분 펄스 부호 변조)

(4) 복합변조

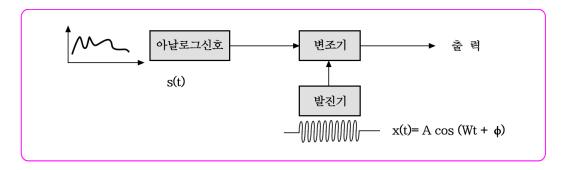
가. QAM = ASK + PSK(진폭 직교 변조)

02 변조(Modulation)의 목적[필](실)

(1) 원거리전송

주파수가 높은 반송파(발진주파수)에 실어(변조) 전송해 원거리 까지 신호전달

(2) 효율적인 안테나 방사(복사) 및 장비의 소형화


반송파의 주파수가 높아져 파장 $(\lambda = \frac{c}{f}[m]\,,\, c = 3 \times 10^8 [m/s])$ 이 짧아지므로, 안테나 및 장비의 소형화 가능

(3) 하나의 통신로에 여러 신호의 동시 전송

반송파의 주파수가 높아져 사용대역폭이 넓어지므로, 대역폭을 분할하여 여러 개의 신호를 동시 에 전송(FDM) 가능

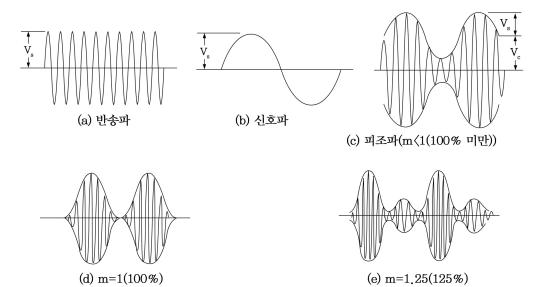
(4) 잡음과 간섭으로부터 강인

반송파의 주파수가 높아져 외부잡음에 강인해지므로, 신호대잡음비 $(\frac{s}{n})$ 가 향상됨

03 변조(Modulation)의 종류

(1) 진폭변조 (AM: Amplitude Modulation)

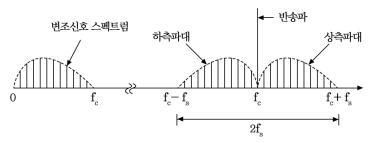
가. 신호파의 크기에 따라 반송파의 진폭을 변화시키는 방식


나. 변조파(eAM)의 전개

$$\begin{split} \mathbf{e}_{\mathrm{AM}} &= \left(\left. V_c + \left. V_s \cos \omega_s t \right) \cos \omega_c t \right. \\ &= \left. \left. V_c \left(1 + \frac{\left. V_s \right.}{\left. V_c \right.} \cos \omega_s t \right) \cos \omega_c t \right. \end{split}$$

여기서, $\frac{V_s}{V_c}$ 를 $\mathrm{m}(\mathrm{HZSE}^{\blacksquare})$ 라 하고, 그 백분율을 HZE 이라 함

다. 변조파(e_{AM})의 파형 및 변조도에 따른 특성 ullet


- 변조도(m(1)인 경우 전력소비가 큼
- 변조도(m=1)인 경우 전력낭비가 없고 이상적임
- 변조도(m)1)인 경우 과변조로 신호가 일그러짐(신호회복이 어려움)

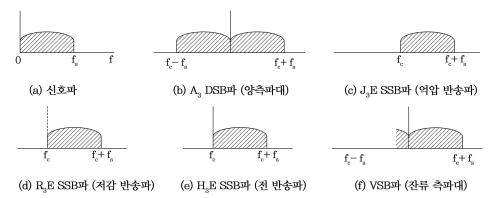
반송파 형태	변조도(m) ^{[필][실]} 계산
$\begin{array}{c} + \\ V \\ 0 \\ \hline \\ -(V_c - V_s \cos \omega_s t) \\ \hline \\ -(V_c - V_s \cos \omega_s t) \\ \hline \end{array}$	$m = \frac{V_s}{V_c} = \frac{A - B}{A + B}$

라. 진폭변조의 측파대(Side Frequency Wave Band)포함 변조파(e_{AM})의 전개

$$e_{AM}=V_c(1+m\cos\omega_s t)\cos\omega_c t=V_c\cos\omega_c t+m\,V_c\cos\omega_s t\cos\omega_c t$$

$$=V_c\cos\omega_c t+\frac{m\,V_c}{2}\cos(\omega_c+\omega_s)t+\frac{m\,V_c}{2}\cos(\omega_c-\omega_s)t$$
 제1항(반송파) 제2항(상측파대) 제3항(하측파대)

- 반송파의 전력을 P_c
- 진폭변조 된 AM파의 상측파대 전력을 P_{y}
- 진폭변조 된 AM파의 하측파대 전력을 P_l
- 전력 $P = VI = \frac{V^2}{R}[W]$ 을 적용하여 각각을 전개

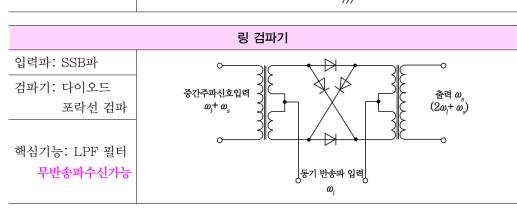

$$\begin{split} P_c &= \frac{(\frac{V_c}{\sqrt{2}})^2}{R} = \frac{V_c^2}{2R} \left[W \right] \\ P_u &= (\frac{\frac{m \, V_c}{2}}{\sqrt{2}})^2 \times \frac{1}{R} = \frac{m^2 \, V_c^2}{8R} = \frac{m^2}{4} \times \frac{V_c^2}{2R} = \frac{m^2}{4} \, P_c \left[W \right] \\ P_l &= (\frac{\frac{m \, V_c}{2}}{\sqrt{2}})^2 \times \frac{1}{R} = \frac{m^2 \, V_c^2}{8R} = \frac{m^2}{4} \times \frac{V_c^2}{2R} = \frac{m^2}{4} \, P_c \left[W \right] \end{split}$$

• $P_{AM} = P_c + P_u + P_l$ 이므로,

$$P_{AM}\!=\,P_c(1+\frac{m^2}{4}\!+\!\frac{m^2}{4})=\,P_c(1+\frac{m^2}{2})\,[\,W]$$

- 변조도 100[%](m=1) 일 때,
 - P_{AM} (피변조파전력)은 P_c (반송파의 전력)의 1.5배 $^{(\blacksquare)}$
 - 반송파 (P_c) , 상측파 (P_u) , 하측파 (P_l) 의 전력비는 $1:1/4:1/4^{\left(\frac{1}{2} \right)}$

마. AM변조방식의 측파대(Side Frequency Wane Band)에 따른 스팩트럼 형태


정보전송일반

바. AM 검파(복조)기

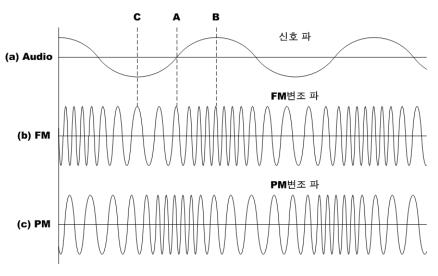
다이오드검파 (직선검파, 포락선검파) 입력파: AM파 V_i(t) V_o(t) 검파기: 다이오드 V_i(t) 포락선검파 _{충전} CT 핵심기능: 충・방전 (a) 입력파형 (AM파) (b) 검파회로 (c) 출력파형

자승검파 입력파: 낮은 AM파 I_d 의 포지션 검파기: 다이오드 2차 고조파 핵심기능: 왜곡 발생 감도 우수

다이오드 검파기 입력파: SSB파 중간주파신호입력 '^^^ 면_i 검파기: 다이오드 (SSB平) 포락선 검파 국부발진신호입력 (반송파) C_1 핵심기능: 왜곡 발생 감도 우수

(2) 주파수변조 (FM: Frequency Modulation)

가. 신호파의 변화(주파수 또는 위상)에 따라 반송파를 변화시키는 방식


나. 변조파(e_{FM})의 전개

$$\begin{split} &e_s(t) = \, V_s \cos \omega_s t \, (\omega_s = 2\pi f_s, \, f_s \colon \text{신호 주파수}) \\ &e_c(t) = \, V_c \cos \omega t \, (\omega_c = 2\pi f_c, \, f_c \colon \text{반송 주파수}) \\ &e_{FM}(t) = \, V_c \cos \left(\omega_c t + k \int_0^t V_s(\tau) d\tau\right) = \, V_c \cos \left(\omega_c t + k \, V_s \int_0^t \cos \omega_s \tau d\tau\right) \end{split}$$

$$=V_{c}\cos\left(\omega_{c}t+\frac{\Delta\omega}{\omega_{s}}sin\omega_{s}t\right)=V_{c}\cos\left(\omega_{c}t+m_{f}\sin\omega_{s}t\right)$$
여기서, $m_{f}=\frac{\Delta\omega}{\omega_{s}}=\frac{\Delta f}{f_{s}}$ 는 변조지수(필)

어거지,
$$m_f = \frac{1}{\omega_s} = \frac{1}{f_s}$$
 는 현조지구 Δf 는 최대 주파수 편이, 대역폭 $B = 2(\Delta f + f_s)$ (필)

다. 변조파(e_{FM})의 파형^[]]

- 진폭변조에 비해 잡음 및 간섭에 강인
- 진폭변조에 비해 신호대잡음비 개선
- 단. 전송채널의 주파수변동에 매우 취약하고. 넓은 주파수 대역이 요구됨

라. FM송신기 구조^픨

- FM 삼각잡음 개선을 위한 프리앰파시스회로 사용
- 입력 신호를 제어하여, 대역폭 조정이 가능한 IDC(순시편이회로) 사용
- 높은 주파수로 천이 할 수 있는 주파수 체배기 사용

2026

정보통신(신업)기사 시험대비

개념과 **기출**을 한번에!

정보통신7171

· 2026년 출제기준 개정내용 완벽 반영!

CBT기출복원문제 수록

- Ⅰ. 개념잡기 기본이론
- Ⅲ. 실전문제풀이
- Ⅲ**. 기출문제** (25년 ~ 19년)

편저 **박종규** 정보통진기술사

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

2. 시험과목

	정보통신기사	정보통신산업기사
	1. 정보전송일반	1. 정보전송일반
	2. 정보통신기기	2. 정보통신기기
필기	3. 정보통신네트워크	3. 정보통신네트워크
	4. 정보시스템운용	4. 컴퓨터일반 및 정보설비기준
	5. 컴퓨터일반 및 정보설비기준	
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사
	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,
필기	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간
٨١٦١	• 검정방법 : 필답형 : 주관식 필기 15~20문	데
실기	• 시험기간 : 2시간 30분	

4. 합격기준

• 필기: 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상

• 실기 : 100점을 만점으로 하여 60점 이상

CHAPTER 01 단말기기	
01 단말기기 기능과 구조	8 8 11 18
	22 22 30
1. 다중화기 ····································	38 38 43 44 46 50
CHAPTER 02 회선개통	
1. 전화기 기능과 동작 ···································	60 60 65 68 70

02 무선설비 적용	78
1. 이동통신 단말	····· 78
2. 무선통신 단말(IEEE802.11, 802.15, 802.16) ····································	92
• 실전 핵심 문제 ·····	
03 신규(이전)인입선 설치	110
1. 사업자용 단말	110
2. 디지털 정보기기	113
• 실전 핵심 문제 ·····	116
CHAPTER 03 영상정보처리기기 공사	
01 영상정보처리기기 설치	124
1. CCTV 시스템 특성 ···································	
2. 영상회의시스템 ····································	
3. 방송단말 ····································	
3. 성공단물 4. 기타단말 ····································	
• 실전 핵심 문제 ···································	
CHAPTER 04 홈네트워크 설비공사	
01 홈네트워크 설치	164
1. 홈네트워크 설비 ······	
2. 홈네트워크건물 인증 ········	
• 실전 핵심 문제 ···································	

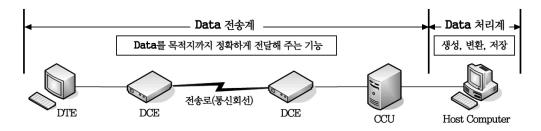
U2 구숙공사	1/6
1. 스마트 미디어기기	176
• 실전 핵심 문제 ·····	182
03 서비스시스템	184
1. 융복합 단말기기 ·····	
• 실전 핵심 문제 ···································	
CHAPTER 05 교환기기	E)
01 신호방식	196
1. 신호방식	
02 교환방식	198
1. 교환방식	198
• 실전 핵심 문제 ······	200
부록 01 정보통신기사 기출문제	E)
• 2019년도 정보통신기사 정보통신기기	204
• 2020년도 정보통신기사 정보통신기기	
• 2021년도 정보통신기사 정보통신기기	
• 2022년도 정보통신기사 정보통신기기	
• 2023년도 정보통신기사 정보통신기기	
• 2024년도 정보통신기사 정보통신기기	
• 2025년도 정보통신기사 정보통신기기	

부록 02 정보통신산업기사 기출문제	
• 2019년도 정보통신산업기사 정보통신기기	268
• 2020년도 정보통신산업기사 정보통신기기	277
• 2021년도 정보통신산업기사 정보통신기기	286
• 2022년도 정보통신산업기사 정보통신기기	295
• 2023년도 정보통신산업기사 정보통신기기	304
• 2024년도 정보통신산업기사 정보통신기기	313

• 2025년도 정보통신산업기사 정보통신기기 322

- 01 단말기기 기능과 구조
- 02 통신장비설치
- 03 전송설비 적용

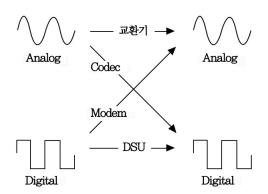
01 >단말기기 기능과 구조


① 정보단말기의 특징과 기능

디지털 데이터의 송수신 과정에서 최종적으로 데이터를 전송하는 기능을 수행하는 입력·출력 장치를 정보단말기라 함

입 · 출력 기능	전송제어 기능	기억 기능
자료 입력	송・수신 제어	임시저장
 처리 후 출력	입·출력 제어	Buffer
	에러 제어	

(1) 정보통신 시스템 구성[필[실]


가. 시스템 구성도

- 정보통신 시스템은 DTE와 DCE, CCU, Host(단말, 컴퓨터)로 구성됨
- 전송로(통신회선, 전송매체, 전송채널)는 다양하게 구성할 수 있으며, 대표적으로 유선전 송로와 무선전송로로 구분할 수 있음
- 유선전송로는 동축케이블, 평행2선식, 광케이블이 있음
- 무선전송로는 300Hz ~ 3000GHz를 사용해 전파채널을 구성 할 수 있음
- 정보통신시스템은 정보를 처리(수집, 가공, 전송)하는 시스템을 말함

- ① DTE(Data Terminal Equipment : 단말 장치)
 - 데이터 단말 장치로 사용자 정보를 신호로 변환하거나, 수신한 신호를 정보로 재 변환 하는 종단 장비
 - 데이터 회선 종단 장비(DCE)와 통신함
 - 입력 · 출력 기능과 송신 · 수신 기능 제공
- ② DCE(Data Communication Equipment: 회선 종단 장치)
 - 데이터 통신 장치로 통신망과 인터페이스 하는 장치
 - 송신측에서 보내려는 정보신호를 전송로에 보내기 적합한 신호로 바꾸어 주는 기능 제공
 - 신호 변환 장치 또는 회선 종단 장치라 함
 - 신호 변화에 따른 DCE 장비 구분^{[필](실)}

정보(Data)	신호(Signal)	DCE 장비
아날로그(Analog)	아날로그(Analog)	교환기
아날로그(Analog)	디지털(Digital)	Codec
디지털(Digital)	아날로그(Analog)	MODEM
디지털(Digital)	디지털(Digital)	DSU(Digital Service Unit)

- ③ CCU(Communication Control Unit: 통신 제어 장치)
 - 데이터 전송회선과 컴퓨터 사이에 위치하며 컴퓨터가 전송회선에 데이터 전송 시 전송 에 필요한 제어를 담당하는 장치
 - 핵심기능은 데이터 전송제어 (에러제어, 흐름제어, 동기제어)기능 수행
 - 문자 조립/분해 및 직병렬 데이터 변환 기능
 - 통신회선의 감시 및 접속 제어 기능
 - 통신회선과 중앙처리장치를 결합하는 기능 (다중전송제어)

(2) 정보통신 시스템 분류 필

통신시스템의 기본 계통은 '중앙처리장치 \rightarrow 통신제어장치 \rightarrow 데이터전송회선 \rightarrow 전송제어장치 \rightarrow 단말장치' 로 구성됨

가. 데이터 처리 방식에 따른 분류

① 중앙처리장치(Central Processing Unit)

'연산, 제어, 주 기억 장치'로 구성되며 전달된 정보를 특정 목적에 따라서 정확하게 처리 하는 기능을 수행하는 장치

② 주변장치

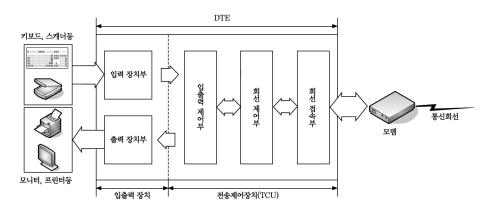
하드 디스크, 보조기억장치(플로피 디스크, CD, SSD)를 이용하여 중앙처리장치에서 처리되어 온 정보를 저장하거나. 출력하는 기능을 수행하는 장치

나, 데이터 통신 시스템에 따른 분류

- ① 온라인 시스템(On Line System)
 - 송신단말장치와 수신 단말장치 사이에 사람이 개입하지 않고, 전송매체를 거쳐 통신하는 방식으로 실시간 처리(Real-Time Processing)시스템
 - 전송매체를 통해 데이터가 빠르고 신속하게 전달되므로 통신제어 장치 필요
 - 응용분야: 은행(Banking), 좌석 예약(Booking), 전자 교환
- ② 오프라인 시스템(Off Line System)
 - 송신단말장치와 수신 단말장치 사이에 사람이나 기계장치의 개입이 필요한 방식으로 실시가 데이터 처리가 불가능한 형태의 시스템
 - 통신회선을 직접 사용하지 않고 기록매체(저장장치)를 이용하므로 통신제어 장치가 필요 없음
 - 응용분야 : 데이터를 한 곳에 모아서 일정한 시점에 처리

다. 통신 처리 방식에 따른 분류

① 실시간 처리(Real-Time Processing)


컴퓨터에 의한 처리 결과를 요구 시 즉시 처리할 수 있는 시스템. 즉, 데이터가 발생하는 즉시 정보를 처리하는 형태의 시스템

- ② 일괄처리(Remote Batch Processing)
 - 단말장치에서 발생한 정보를 일정시간, 일정량을 모았다가 한꺼번에 정보를 처리하는 시스템
 - 일정기간 수집 후 처리하는 일괄처리(Batch Processing)방법과 데이터가 단말에서 발생할 때 마다. 입력해 한건 씩 처리하는 트랜잭션처리(Transaction Processing)방법 이 있음

02 정보단말기의 기본 구성 요소

DTE (단말장치)				
입·출력 장치부	입·출력 제어부	회선 접속부 + TCU		중앙처리장치
키보드 및 모니터 등	오류제어 및 송수신 제어 등	물리적 접속 (커넥터) 등	전송제어장치	CPU, Memory (메모리) 등

- 단말장치(DTE)는 전송제어장치와 입 출력 장치로 구분 할 수 있음[™]
- 전송제어장치(TCU)는 회선 접속부, 회선 제어부, 입·출력제어부로 나뉨^픨

(1) **입**·출력 장치부

가. 입ㆍ출력 장비부

- ① 입력 장치부^(필)
 - ⓐ 키보드 (적외선 키보드) 및 마우스(디지타이져-정밀한 마우스)
 - ⓑ 광펜 (Light Pen)
 - ⓒ 음성 및 문자, 화상 입력장치
 - 광학 문자 판독기 (OCR 글씨를 인식하는 장치)
 - 카드 판독기 (천공카드의 구멍을 인식하는 장치)

② 출력 장치부^[필]

- ⓐ 인쇄장치
 - 라인 프린터 : 한 행을 한 번에 인쇄 (고속인쇄, 최근 프린터 대부분)
 - 시리얼 프린터: 좌에서 우로 한 글자씩 인쇄(도트, 감열, 열전사)
 - 충격식 프린터 : 글자를 헤드에 묻어있는 잉크로 때려 인쇄(가격 저렴, 타이프라이터, 도트매트릭스)

• 레이저 프린터 : 토너 가루를 미세한 레이저 빔을 이용해 종이에 뿌림

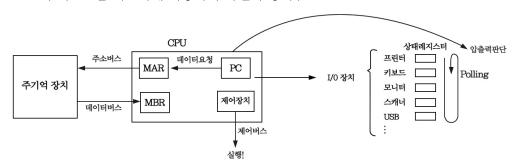
• 버블젯 프린터 : 미세한 잉크 방울을 만들어 종이에 잉크 방울을 묻힘

• 잉크젯 프린터 : 잉크를 높은 압력으로 종이에 뿌림

(b) 표시장치^(필)

- LCD(Liquid Crystal Display)
 - 인가되는 전압에 따라 액정(LCD)의 투과도 변화를 이용하는 장치
 - 자기발광성이 없어 후광(Back Light)이 필요함
 - 소비전력이 적고. 휴대용으로 널리 쓰이는 평판 디스플레이의 일종
- PDP(Plasma Display Panel)
 - 작은 네온전구의 집합과 같은 기능을 하는 평면형 표시장치
 - 2매의 얇은 유리기판사이의 틈에 네온(Ne) 등의 가스를 봉입하고 유리의 내면에 수평 방향과 수직방향으로 배열된 투명전극으로 구성
- CRT(Cathode Ray Tube)
 - 아날로그 TV의 브라운관
 - Cathode Ray Tube의 약자로 전기신호를 전자범의 작용에 의해 영상이나 도형. 문자 등의 광학적인 상(그림자)으로 변환하여 표시
 - 특수진공관으로 음극선관(CRT)이라고 함
- OLED(Organic Light Emitting Diodes : 유기발광다이오드)
 - 2개의 전극(Anode 와 Cathode)사이에 삽입된 유기물 층에 가해지는 전기장에 의해 발광하게 되는 자체 발광형 디스플레이 소자
 - 반응속도가 LCD에 비해 1000배 빠름(동영상에 잔상이 없음)

ⓒ 입력과 출력 공용 장치 필


- 입력과 출력 쌍방의 변환 기능을 모두 가진 대화형 단말
- TSS(Time Sharing System)이 필수로 요구됨

	LCD	OLED
	• 고휘도(밝기) 표현능력 우수	• 높은 명암비 구현 가능
	• 번인(Burn-In) 현상 적음	• 전력소모가 낮음
= +1	기술 성숙도 높음	• 빠른 응답속도와 넓은 시야각
특 징	• 가격 낮음	• 선명한 색감 표현 가능
		• 구조적으로 두께가 얇음
		• 플렉서블(Flexible) 디스플레이 구현 가능
구조	B G R Colour Filter Liquid Crystal	W B G Colour Refiner

(2) **입·출력 제어부**

가. CPU에 의한 방식

- 초기 컴퓨터에서 사용하던 방식
- 입출력 장치가 컴퓨터에 연결되고 고유의 레지스터를 할당받아 동작
- CPU의 리소스를 과도하게 사용하여 자원이 낭비됨

* 개발자를 향하여 블로그 참조

나. DMA(Direct Memory Accsee) 방식

- CPU의 개입 없이 DMA에 의해 제어되는 방식
- CPU의 제어권이 없어 통제가 안되는 문제 발생 →Channel 방식으로 개선

2026

정보통신(산업)기사 시험대비

개념과 **기출**을 한번에!

정보통신네트워크

· 2026년 출제기준 개정내용 완벽 반영!

CBT기출복원문제 수록

- Ⅰ. 개념잡기 기본이론
- Ⅲ. 실전문제풀이
- Ⅲ**. 기출문제** (25년 ~ 19년)

편저 **박종규** 정보통신기술사

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

2. 시험과목

	정보통신기사	정보통신산업기사
	1. 정보전송일반	1. 정보전송일반
	2. 정보통신기기	2. 정보통신기기
필기	3. 정보통신네트워크	3. 정보통신네트워크
	4. 정보시스템운용	4. 컴퓨터일반 및 정보설비기준
	5. 컴퓨터일반 및 정보설비기준	
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사	
	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,	
필기	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)	
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간	
٨١٦١	• 검정방법 : 필답형 : 주관식 필기 15~20문	데	
실기	• 시험기간 : 2시간 30분		

4. 합격기준

• 필기: 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상

• 실기 : 100점을 만점으로 하여 60점 이상

C	HAPTER 01/네트워크 구축설계	
01	기본설계	10
	1. 네트워크구축 설계 ·····	10
	2. 네트워크 분류 및 특징	11
	3. 통신 프로토콜 기능 및 특징 ·····	14
	4. 네트워크 설계 기준	32
	• 실전 핵심 문제 ······	34
02	실시설계 ("기사"만 해당)	40
	1. 흐름제어, 에러제어, 혼잡제어	40
	2. 흐름제어	41
	3. 오류제어 및 혼잡제어	43
	4. MAC(Media Access Control)	45
	5. 네트워크 실시설계 산출물	48
	6. 네트워크 장애 대응	49
	• 실전 핵심 문제 ·····	56
C	HAPTER 02 인터넷 설비공사	
01	인터넷 설비공사 계획 및 준비	66
	1. 인터넷(IP) 주소체계 ······	66
	2. 서브넷팅(CIDR, VLSM) ······	68
	3. IP계층 응용 프로토콜 ····································	74
	4. IP주소 자원관리 ····································	77
	• 실전 핵심 문제 ·····	80

CHAPTER 03 근거리통신망(LAN) 설계	
01 아키텍쳐 설계	····· 9z
1. 이더넷 개념 ·····	
2. L2 스위치 구성 및 동작 ······	
3. L3 스위치 구성 및 동작 ······	
4. 장비 시험인증 제도	
• 실전 핵심 문제 ······	
CHAPTER 04 스위치장비구축	
01 VLAN 구성 ······	118
1. VLAN 개념 ······	
2. VLAN 구성 및 동작 ······	120
• 실전 핵심 문제	
02 라우팅 구성	128
1. 라우팅 개념 ·····	128
2. 라우팅 프로토콜 ·····	130
• 실전 핵심 문제	134
03 이중화구성	140
1. 전달계층 프로토콜 ······	140
• 실전 핵심 문제	144
04 백업 ("기사"만 해당)	150
1. 응용 프로토콜	150

2. 백업 및 장애검출 프로토콜 ····································	
05 장비선정	160
1. 유선 LAN시스템 구성(CSMA/CD) ·······	160
2. 무선 LAN 시스템 구성(CSMA/CA) ·······	161
• 실전 핵심 문제 ·····	
CHAPTER 05 구내통합설비 설계	
01 구내교환설비 설계	172
1. 전화망(교환시스템, 구내통신망 등) ······	
2. 패킷교환망	175
3. 인터넷 통신망(xDSL, FTTx, VRRP, GLBP) ······	179
4. 전송장비(SDH/SONET, MSPP, WDM, OTN 등) ···································	185
• 실전 핵심 문제 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	192
CHAPTER 06 이동통신서비스 시험	(mg)
01 요구사항분석	200
1. 무선통신망의 개요 및 구조 ······	
2. 이동통신망의 개요 및 구조 ······	205
3. 위성통신망의 개요 및 구조 ······	
• 실전 핵심 문제 ······	212

CHAPTER 07 홈네크워크 설비 공사	(c)
01 홈네트워크 설비 설치	222
1. 홈네트워크 미디어 서비스 ·····	
2. SDN, NFV	
3. loT기반 홈네트워크 스마트홈 서비스 ·····	
• 실전 핵심 문제 ·····	230
부록 01 정보통신기사 기출문제	(h)
• 2019년도 정보통신기사 정보통신네트워크 ·····	238
• 2020년도 정보통신기사 정보통신네트워크	
• 2021년도 정보통신기사 정보통신네트워크	
• 2022년도 정보통신기사 정보통신네트워크	
• 2023년도 정보통신기사 정보통신네트워크	274
• 2024년도 정보통신기사 정보통신네트워크	283
• 2025년도 정보통신기사 정보통신네트워크	292
부록 02 정보통신산업기사 기출문제	
• 2022년도 정보통신산업기사 정보통신네트워크	302
• 2023년도 정보통신산업기사 정보통신네트워크	311
• 2024년도 정보통신산업기사 정보통신네트워크	
• 2025년도 정보통신산업기사 정보통신네트워크	329

01 기본설계

02 실시설계

네트워크 구축설계

(필)은 필기, (실)은 실기 기출에서 3회 이상 출제

기본설계

🕦 네트워크 기본구성

통신망(Telecommunication Network)이란 정보를 전달하기 위한 구성으로 단말기, 교환기 (전송장비), 전송망으로 구성됨

단말기(컴퓨터)	교환기(전송장비)	전송망
사람과 통신망 사이의	경로설정 및 중계(전송)하는	데이터를 신호로 전달하는
Interface 장비	장비	매체

(1) 네트워크(통신망) 구축시 필요기술[필]실]

- 송 수신을 위한 두 시스템 간에 정확하고 신뢰성 있는 정보전송이 가능 하도록 상호간에 지켜 야 할 제반 사항을 규정한 통신 프로토콜 필요
- 서로 다른 통신망을 접속시키는 통신망간 접속 기술 필요
- 네트워크(통신망)의 효율적인 운용 및 보전 관리를 위한 운영 · 관리 기술 필요

※ 쉽게 이해하는 네트워크 교재 참조

02 네트워크 분류 및 특징

(1) 네트워크 분류(규모)

가. 근거리 정보통신망 (LAN: Local Area Network)

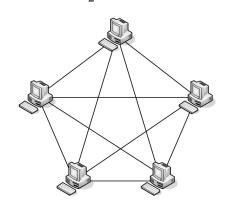
수[m]이내의 지역에 분산배치된 각종 단말 장치 사이에서 고속(Gbps)으로 통신을 하기 위한 통신망

나. 중거리 정보통신망 (MAN: Metropolitan Area Network)

네트워크(통신망)의 서비스 영역은 약 수[km]내를 대상으로 한 통신망

다. 원거리 정보통신망 (WAN: Wide Area network)

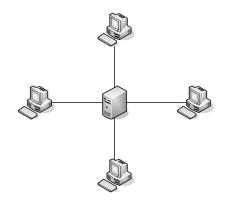
광역통신망으로 다국적 기업 간 또는 기관 간의 LAN을 상호 연결시킨 형태의 통신망으로 서비스 영역은 약 수백[km] 이내로 한 통신망


(2) 네트워크 분류 (구성형태)^[필]실]


가. 그물 형(Mesh형)

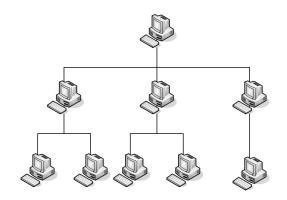
- 그물 형은 네트워크(통신망)의 모든 단말들을 회선(Link)로 연결한 형태
- 모든 단말 간 개별적인 통신회선으로 연결하기 때문에 비용이 많이 발생
- 또한, 각각의 단말들은 다수의 통신 포트들을 가지고 있어야 함
- 각 단말 간 데이터 전달 신뢰성이 매우 높은 장점이 있음

• 그물 형 네트워크 특징


- ① 근거리 통신망(LAN) 보다는 광대역 통신망(WAN)에 많이 사용됨
- ② 한 회선의 장애발생시 우회 경로가 있어 위회 하여 통신 가능
- ③ 단말(노드)간 전송 신뢰성이 가장 우수한 방식
- ④ 가장 많은 통신회선이 필요하며, 통신망의 구축비용이 가장 높음
- ⑤ 그물형 통신망의 회선 수는 $\frac{n(n-1)}{2}$ (단말기 개수 : n)

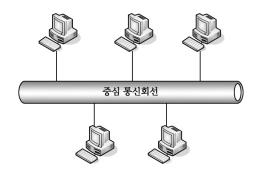
나. 스타 형(Star형)

- 전송되는 데이터를 센터의 컴퓨터(단말)나 교환기가 제어하고 중앙의 컴퓨터나 교환기에 모든 단말들이 일대일 또는 일대다로 연결된 형태
- 소규모 근거리 통신망(LAN) 구축에 적합함
- 통신회선의 융통성의 뛰어남
- 스타 형 네트워크 특징
 - ① 단말 고장시 발견 쉽고 유지보수가 용이함
 - ② 단말기마다 전송속도를 다르게 설정할 수 있음
 - ③ 또한, 단말의 추가 및 삭제가 용이함
 - ④ 단, 중앙 컴퓨터(단말)나 교환기의 장애 발생 시 전체기능이 정지됨
 - ⑤ 단말 증가에 따라 통신회선(Link)수가 늘어남



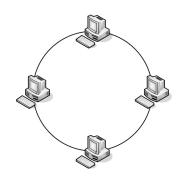
다. 트리 형(Tree형)

- 트리 형은 하나의 단말에서 여러 개의 통신회선(Link)이 분배되어 나가는 형태
- 중앙에 단말을 두고 일정 지역의 단말까지는 하나의 통신회선으로 연결되고 일정 지역의 단말에서 다시 그 지역의 다수의 단말과 연결됨
- 마치 그물(Mash) 형처럼 하나의 단말에 여러 개의 단말을 연결되는 방식
- 네트워크(통신망)을 확장할 때 가장 가까운 단말에 연결하기 때문에 통신망의 확장 및 구축 이 용이함
- 트리형 네트워크 특징
 - ① 근거리 통신망(LAN) 보다는 광대역 통신망(WAN)에 주로 사용
 - ② 통신망의 추가 및 확장이 용이함
 - ③ 상위 통신망 장애 발생 시 하위 통신망 단말들도 통신이 중단



- ④ 통신망의 확장이 많아질 수록 트래픽이 한곳에 집중될 수 있음
- ⑤ 분산처리 시스템 구성이 가능함

라. 버스 형(Bus형)


- 버스 형은 하나의 케이블에 모든 단말기들이 연결되는 형태
- 각 단말에서 전송되는 데이터는 방송(브로드캐스트)형태로 전송
- •모든 단말은 수신정보의 특별한 식별번호에 의해 해당하는 정보만 수신
- 통신망 구조가 간단하고. 각 단말의 추가 제거가 용이 함
- 단, 중심 케이블 양 끝에 '바운딩 현상'을 막기 위해 '터미네이터' 장치 부착
- 버스형 네트워크 특징
 - ① 모든 단말들이 하나의 통신회선(Link)을 공유하므로 구축비용이 저렴
 - ② 단말기 고장 시 전체 통신망에 영향을 주지 않아 신뢰성이 높음
 - ③ 모든 단말이 통신회선 상에 전송되는 데이터를 수신할 수 있어 데이터의 비밀 보장이 어려움
 - ④ 통신회선에 장애 발생 시 전체 통신망에 영향을 줄수 있음
 - ⑤ 통신회선의 길이에 제한을 받으며 주로 근거리 통신망(LAN)에 사용

마. 링형(Ring형)

- 각각의 단말기들이 서로 이웃하는 것끼리만 직접 또는 중계를 통해 연결
- 전송 데이터는 방송(브로드캐스트)형태로 전송되므로 각 단말마다 공평한 통신 서비스를 수행할 수 있음
- 링형 네트워크 특징
 - ① 통신회선과 단말기 고장 시 발견이 용이 함
 - ② 새로운 단말의 추가 또는 기존 단말의 삭제 시 통신회선을 절단해야 함
 - ③ 단말 고장이나 통신회선 장애 시 전체 통신망에 영향을 주므로 우회기능과 통신회선의 이중화 등이 필수임
 - ④ 각 단말에서 데이터 전송이 전송지연이 발생할 수 있음
 - ⑤ 통신회선의 길이에 제한을 받음

03 통신 프로토콜 기능 및 특징[필][실]

- 서로 다른 장비들 간에 통신망(네트워크)를 통해 서로 통신(의사소통)을 할 수 있는 것이 프로 토콜(Protocol) 임
- 물리적 또는 지리적으로 멀리 떨어져 있는 각각의 시스템들과 통신(의사소통)을 하기 위한 필수 조건이며, 정보통신망이 성립되기 위한 가장 기본적인 요소임

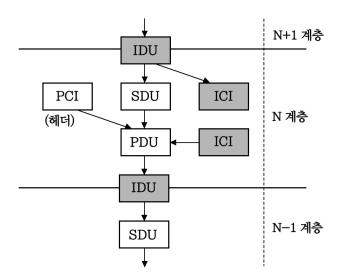
(1) 프로토콜의 정의

- 서로 다른 시스템(단말)간에 신뢰성 있는 정보를 전송하기 위하여 미리 약속된 절차 및 규정 (통신 규약)
- 국제표준화 단체 ISO(International Standards Organization), IEEE(Institute of Electrical and Electronics Engineers)등이 대표적임

(2) 프로토콜(Protocol)의 기본 구성요소 [필]

- 원격지 통신 시스템 간에 신뢰성 있는 정보를 전달하기 위한 기본 요소
- 프로토콜해서 정하는 기본요소로 '데이터의 형식과 전기적인 신호의 형태', '송 수신 시스템 간의 정보 전송시점과 수신 시점', '수신된 정보의 종단점을 맞추는 동기화' 기능 수행 과 전송 흐름의 양을 조절하는 흐름제어 방법 등 정의
- 프로토콜 속에 포함 시켜야 하는 3요소는 '구문, 의미, 타이밍' 임

가. 구문(Syntax)


전달되는 데이터의 형식, 부호화, 신호레벨 등을 규정

나 의미(Semantic)

정확하고 효율적인 정보 전송을 위한 객체간의 조정과 에러 제어 등을 규정

다. 순서(Timing)

접속되는 개체간의 통신 속도의 조정과 메세지의 순서 제어 등을 규정

SDU: Service Data Unit

PCI: Protocol Control Information

PDU: Protocol Data Unit IDU: Interface Data Unit

ICI: Interface Control Information

2026

정보통신(산업)기사 시험대비

개념과 **기출**을 한번에!

컴퓨터일반및 정보설비기준

· 2026년 출제기준 개정내용 완벽 반영!

CBT기출복원문제 수록

- Ⅰ. 개념잡기 기본이론
- Ⅱ. 실전문제풀이
- III. 기출문제 (25년 ~ 19년)

편저 **박종규** 정보통신기술사

1. 시행처 : 한국방송통신전파진흥원(https://www.cq.or.kr/main.do)

2. 시험과목

	정보통신기사	정보통신산업기사
	1. 정보전송일반	1. 정보전송일반
	2. 정보통신기기	2. 정보통신기기
필기	3. 정보통신네트워크	3. 정보통신네트워크
	4. 정보시스템운용	4. 컴퓨터일반 및 정보설비기준
	5. 컴퓨터일반 및 정보설비기준	
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사
	• 검정방법 : 객관식 4지선다형,	• 검정방법 : 객관식 4지선다형,
필기	• 문제수 : 100문제(과목당 20문제)	• 문제수 : 80문제(과목당 20문제)
	• 시험시간 : 2시간 30분	• 시험시간 : 2시간
٨١٦١	• 검정방법 : 필답형 : 주관식 필기 15~20문제	
실기	• 시험기간 : 2시간 30분	

4. 합격기준

• 필기: 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상

• 실기 : 100점을 만점으로 하여 60점 이상

CHAPTER 01 하드웨어기능별 설계환경설정	
01 블록도 작성	10
1. 컴퓨터의 기본구조 ·····	10
• 실전 핵심 문제 ·····	18
CHAPTER 02 전자부품 S/W개발	
01 OS환경 분석 ······	28
1. 시스템 프로그램의 이해 ·····	28
2. 프로세스(Process)의 정의 ······	34
3. 파일시스템 ·····	36
• 실전 핵심 문제 ·····	38
CHAPTER 03 구내통합설비 설계	
01 네트워크 운용	50
1. 인터넷(IP) 주소체계 ······	50
2. 서브넷팅(CIDR, VLSM) ····································	52
3. IP계층 응용 프로토콜 ·····	58
4. IP주소 자원관리 ······	60
5. 전달계층 프로토콜	63
6. 응용 프로토콜	66
7. 백업 및 장애검출 프로토콜 ·····	69
8. 이더넷 개념 ·····	72

9. L2 스위치 구성 및 동작 ·····	79
10. L3 스위치 구성 및 동작 ······	81
• 실전 핵심 문제 ·····	82
CHAPTER 04 보안운영관리	
01 기반인프라 장비보안	96
1. 해킹 및 보안 ·····	
2. 기술적보안	
3. 네트워크 스캐닝	104
4. 네트워크 보안기술 ·····	106
• 실전 핵심 문제 ·····	114
CHAPTER 05 분석용데이터 구축	
<mark>01</mark> 데이터 정제 ······	
1. 빅 데이터	126
CHAPTER 06 서비구축	
01 서버가상화 구축 ······	130
	130
1 /LAtal/\/urticlination\/	120
1. 가상화(Virtualization) ······	130
1. 가상화(Virtualization)	134

02 Cloud서비스 활용 ·····	136
1. 클라우드컴퓨팅(Cloud computing) ······	136
2. 클라우드컴퓨팅 분류 ····	136
3. 클라우드컴퓨팅 보안 ····	137
4. WEB, WAS	138
• 실전 핵심 문제 ·····	140
CHAPTER 07 정보통신 법규 해석	
01 정보통신관련 법규	144
1. 전기통신기본법(용어, 기본계획 수립) ·····	144
2. 전기통신사업법(용어, 역무, 유지보수) ······	145
3. 방송통신발전기본법(용어, 공공복리의 증진)	148
4. 정보통신공사업법(용어, 공사의 제한) ······	150
5. 클라우드컴퓨팅법(용어)	152
• 실전 핵심 문제	154
02 구내통신환경분석	166
1. 방송통신설비의 기술기준에 관한 규정(용어, 일반조건, 면적/회선수) ·····	166
2. 접지설비·구내통신설비·선로설비 및 통신공동구에 대한 기술기준 ··································	171
3. 지능형 홈네트워크 설비 설치 및 기술기준(용어, 설비, 설치기준) ·····	176
• 실전 핵심 문제 ·····	182
03 지능형 영상관제 법령	192
1. 개인정보보호법 ·····	192
• 실전 핵심 문제 ······	194

04 설계단계의 감리업무	196
1. 정보통신공사업법 제2장 공사의 설계・감리	196
2. 정보통신공사의 종류 ·····	197
05 설계도서 분석	198
1. 설계대상공사 및 범위 ·····	198
2. 감리대상공사 및 감리원 배치제도 ·····	198
3. 정보통신공사 설계 기준 및 산출물 ·····	201
4. 정보통신 감리업무 ·····	202
5. 정보통신공사 감리업무 수행기준(2019) ·····	202
• 실전 핵심 문제 ·····	206
부록 01 정보통신기사 기출문제	
보록 01 정보통신기사 기출문제 • 2019년도 정보통신기사 컴퓨터일반	
	212
• 2019년도 정보통신기사 컴퓨터일반	212
• 2019년도 정보통신기사 컴퓨터일반 ····································	212 217
2019년도 정보통신기사 컴퓨터일반	212 217 223
• 2019년도 정보통신기사 컴퓨터일반 • 2019년도 정보통신기사 정보설비기준 • 2020년도 정보통신기사 컴퓨터일반 • 2020년도 정보통신기사 정보설비기준	212 217 223 229
• 2019년도 정보통신기사 컴퓨터일반 • 2019년도 정보통신기사 정보설비기준 • 2020년도 정보통신기사 컴퓨터일반 • 2020년도 정보통신기사 정보설비기준 • 2021년도 정보통신기사 컴퓨터일반	212 217 223 229 239 241
• 2019년도 정보통신기사 컴퓨터일반 • 2019년도 정보통신기사 정보설비기준 • 2020년도 정보통신기사 컴퓨터일반 • 2020년도 정보통신기사 정보설비기준 • 2021년도 정보통신기사 컴퓨터일반 • 2021년도 정보통신기사 정보설비기준	212 217 223 229 239 241
• 2019년도 정보통신기사 컴퓨터일반 • 2019년도 정보통신기사 정보설비기준 • 2020년도 정보통신기사 컴퓨터일반 • 2021년도 정보통신기사 검퓨터일반 • 2021년도 정보통신기사 컴퓨터일반 • 2021년도 정보통신기사 정보설비기준 • 2022년도 정보통신기사 컴퓨터일반	212 217 223 229 238 241 247 253

• 2024년도 정보통신기사 컴퓨터일반 ····· 269

들어가는 정보통신(산업)가사 **. 컴퓨터일반 및 정보설비기준 순서**

• 2024년도 정보통신기사 정보설비기준 ·······	275
• 2025년도 정보통신기사 컴퓨터일반	280
• 2025년도 정보통신기사 정보설비기준	287
나 = 02 저너투시사이기나 기초모델	(as)
부록 02/정보통신산업기사 기출문제	
• 2019년도 정보통신산업기사 컴퓨터일반	292
• 2019년도 정보통신산업기사 정보설비기준	298
• 2020년도 정보통신산업기사 컴퓨터일반	304
• 2020년도 정보통신산업기사 정보설비기준	310
• 2021년도 정보통신산업기사 컴퓨터일반	316
• 2021년도 정보통신산업기사 정보설비기준	322
• 2022년도 정보통신산업기사 컴퓨터일반	328
• 2022년도 정보통신산업기사 정보설비기준	334
• 2023년도 정보통신산업기사 컴퓨터일반	338
• 2023년도 정보통신산업기사 정보설비기준	346
• 2024년도 정보통신산업기사 컴퓨터일반 ······	351
• 2024년도 정보통신산업기사 정보설비기준	357
• 2025년도 정보통신산업기사 컴퓨터일반	363

• 2025년도 정보통신산업기사 정보설비기준 ************************** 370

CHAPTER 0 하드웨어 기능별 설계환경설정

01 블록도 작성

<mark>])</mark> 하드웨어기능별 설계환경설정

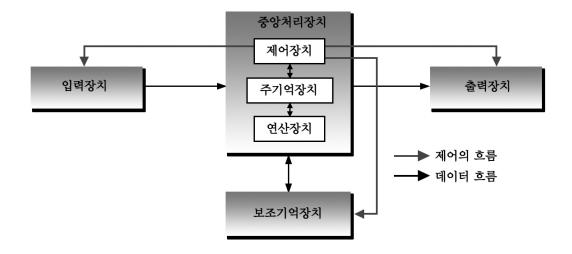
(필)은 필기, (실)은 실기 기출에서 3회 이상 출제

블록도 작성

이 컴퓨터의 기본구조

중앙처리장치	보조 기억장치	입 · 출력 장치
CPU	RAM, ROM	키보드, 프린터

(1) **입·출력장치**

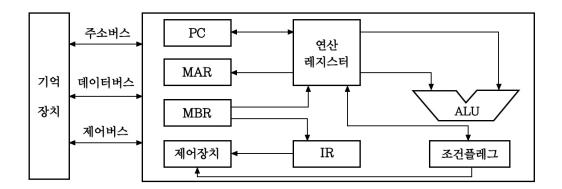

각종 자료들을 컴퓨터 내부로 읽어 들이거나 작업한 결과를 화면이나 그 밖의 장치를 통해 표시함

(2) 중앙처리장치(CPU: Central Process Unit)

인간의 두뇌에 해당하며 제어장치와 연산장치, 주기억장치를 중앙처리장치(CPU)의 3대요소 라고 하며, 각종 프로그램을 해독한 내용에 따라 명령(연산)을 수행하고 컴퓨터 내의 각 장치들 을 삭제, 지시, 감독하는 기능을 수행

(3) 보조 기억장치

주 기억장치의 한정된 기억용량을 보조하기 위해 사용하는 것이며 전원이 차단되어도 기억된 내용이 상실되지 않음



(4) 중앙처리장치의 구성 요소와 특징

가. 중앙처리장치(CPU: Central Process Unit)

인간의 두뇌와 같은 역할을 담당하는 컴퓨터의 핵심 장치이며 프로그램을 해독하여 실제연 산 및 논리적인 판단을 수행하고, 컴퓨터의 각 장치들을 지시·감독함

① 제어장치(Control Unit)

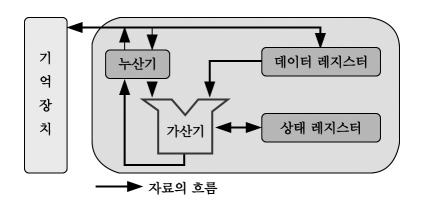
- 컴퓨터를 구성하는 모든 장치가 효율적으로 운영되도록 통제하는 장치
- 주기억 장치에 저장되어 있는 프로그램의 명령들을 차례대로 수행하기 위하여 기억장 치와 연산장치 또는 입력장치
- 출력장치에 제어 신호를 보내거나 이들 장치로부터 신호를 받아서 다음에 수행할 동작을 감시, 감독하는 장치

② 제어장치의 기능

- 주기억 장치에 기억되어 있는 프로그램의 명령들을 해독
- 해독된 명령에 따라 각 장치(입출력, 기억, 연산)들에 신호를 보내어 유기적으로 결합시 켜 데이터를 처리함
- 처리된 결과를 기억장치에 기억시키고, 내용을 출력함
- 프로그램을 실행하는 도중 사고가 발생하면 동작을 잠시 중단하고 사고가 치료되면 다 시 계속 프로그램을 수행함
- ③ 메모리 번지 레지스터 (MAR: memory address register) 주기억 장치 내의 명령이나 자료가 기억되어 있는 주소를 보관함
- ④ 기억 버퍼 레지스터 (MBR: memory buffer register) 번지 레지스터가 보관하고 있는 주기억 장치 내의 주소에 기억된 명령이나 자료를 읽어 들여 보관함

⑤ 명령 레지스터 (IR: instruction register)

실행할 명령을 기억 레지스터로부터 받아 임시 보관하며, 명령부에는 실행할 명령 코드가 기억되어 있고 이 명령 코드는 명령 해독기로 보내져 해독됨


⑥ 프로그램 카운터(program counter : PC)

CPU가 다음에 처리해야 할 명령이나 데이터의 메모리 주소를 지시함

⑦ 명령 해독기 (ID: instruction decoder) 명령 레지스터의 명령부에 보관되어 있는 명령을 해독하며 필요한 장치에 신호를 보내어 동작하도록 함

나. 연산장치(ALU: Arithmetic Logical Unit)

컴퓨터가 처리하는 모든 연산활동을 수행하는 장치이며, 제어장치의 지시에 따라 산술연산, 논리연산, 자리 이동 및 크기의 비교 등을 수행하는 장치임

① 누산기(accumulator: ACC): ALU에서 처리한 결과를 저장

② 데이터 레지스터(data register): 연산해야 할 자료를 보관

③ 상태 레지스터(status register) : 연산결과 표출에 사용되는 레지스터

④ 스택 포인터(stack pointer : SP) : 레지스터의 내용이나 프로그램 카운터의 내용을 일시 기억시키는 곳을 스택이라 함

다. 주기억장치(Main Memory Unit)

- 수행되고 있는 프로그램과 이의 수행에 필요한 데이터를 기억하는 장치
- 데이터를 저장하고 인출하는 데 드는 시간이 빨라야 하며, 보조기억장치 보다 기억용량 대비 비용이 고가임
- ROM(read only memory)과 RAM(random access memory)이 주기억장치 임

① 롬(ROM: Read Only Memory)

- 주로 시스템이 필요한 내용(ROM BIOS)을 제조 단계에서 기억시킨 후 사용자는 오직 기억된 내용을 읽기만 하는 장치(변경이나 수정 불가)임
- 전원공급이 중단되어도 기억된 내용을 그대로 유지하는 비휘발성 메모리
- ·롬의 종류: Masked ROM, PROM(Programmable ROM), EPROM(Erasable PROM), EEPROM(Electrical EPROM) 이 있음

② 램(RAM: Random Access Memory)

- 일반적인 PC의 메모리로 현재 사용중인 프로그램이나 데이터를 기억함
- 전원 공급이 끊기면 기억된 내용을 잃어버리는 휘발성 메모리임
- 각종 프로그램이나 운영체제 및 사용자가 작성한 문서 등을 불러와 작업할 수 있는 공간 으로 주기억 장치로 사용되는 DRAM(dynamic RAM)과 캐시 메모리로 사용되는 SRAM(static RAM)의 두 종류가 있음

구분	동적 램(DRAM:Dynamic RAM)	정적 램(SRAM : Static RAM)
구성	대체로 간단 (MOS 1개 + Capacitor 1개로 구성)	대체로 복잡 (플립프롭(flip-flop)으로 구성)
용량	대용량	소용량
특 징	 기억한 내용을 유지하기 위해 주기 적인 재충전(Refresh)이 필요한 메모리 소비전력이 적음 SRAM보다 집적도가 크기 때문에 대용량 메모리로 사용되나 속도가 느림 	• 재충전(Refresh)이 필요없는메모리 • DRAM보다 속도가 빨라 주로 고속 의

라. 보조 기억 장치

주기억장치를 보조해주는 기억장치로 대량의 데이터를 저장할 수 있으며 주기억장치에 비해 처리속도는 느리지만 반영구적으로 저장이 가능한 기억장치를 말함

① 자기 테이프(magnetic tape)

기억된 데이터의 순서에 따라 내용을 읽는 순차적 접근만 가능하며 속도가 느려 데이터 백업용으로 사용, 가격이 저렴하여 보관할 데이터가 많은 대형 컴퓨터의 보조기억장치에 사용

② 카트리지 테이프(cartridge tape)

자기 테이프를 소형으로 만들어 고정된 집에 넣어서 만든 형태

③ 자기 디스크(magnetic disk)

데이터의 순차접근과 직접 접근이 모두 가능하며, 다른 보조기억장치에 비해 비교적 속도가 빠르므로 보조기억장치로 사용됨

- ④ 하드 디스크(hard disk)
 - 컴퓨터의 외부 기억장치로 사용되며 세라믹이나 알루미늄 등과 같이 강성의 재료로 된 원통에 자기 재료를 바른 자기기억장치
 - 직접 접근 기억 장치로 기억 용량은 비교적 크고 간편하지만, 디스크 팩을 교환할 수 없어 해당 디스크의 기억 용량 범위에서만 사용함
- ⑤ 플로피 디스크(floppy disk)

자성 물질로 입혀진 얇고 유연한 원판으로 개인용 컴퓨터의 가장 대표적인 보조기억 장치로서 적은 비용과 휴대가 간편함

⑥ 자기 드럼(magnetic drum)

자성재료로 피막된 원통형의 기억매체로 이 원통을 자기헤드와 조합하여 자기기록을 하는 자기 드럼 기억장치로 구성됨

마. 메모리의 구조

① 캐시 기억장치(cache Memory)

캐시 메모리는 CPU와 주기억장치 사이에 위치하여 두 장치의 속도 차이를 극복하기 위해 CPU에서 가장 빈번하게 사용되는 데이터나 명령어를 저장하여 사용되는 메모리로 주로 SRAM을 사용함

- ② 가상 기억장치(virtual memory)
 - 하드디스크와 같은 보조기억장치의 일부분을 마치 주기억장치처럼 사용하는 공간을 말함
- ③ 연관 기억장치(associative Memory) 검색된 자료의 내용 일부를 이용하여 자료에 직접 접근할 수 있는 기억장치

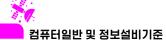
(5) 입력장치

가, 화면이용 입력 장치

- ① 키보드(Kevboard): 컴퓨터에 가장 많이 사용하는 입력 장치
- ② 마우스(Mouse) : 볼 마우스나 휠 마우스 이외에 광학 마우스, 트랙볼 마우스 등이 있으며 키보드처럼 컴퓨터에서 반드시 필요한 입력 장치
- ③ 스캐너: 사진이나 그림을 컴퓨터로 읽어 들이는 입력장치

- ④ 디지털 카메라: 렌즈를 통하여 들어온 빛을 CCD라는 반도체를 이용하여 전기적 신호로 바꾸어 메모리에 저장하는 장치
- ⑤ 라이트 펜(Light Pen): 펜에 달린 센서에 의해 좌표의 선을 그리거나, 점을 찍어 그림을 그려 그래픽 작업에 이용하는 입력 장치
- ⑥ 터치스크린(touch screen): 모니터를 접촉함으로써 컴퓨터와 교신할 수 있는 입력장치

나. 광학적 입력장치


- ① 카드 판독기(Card Reader): 카드 천공기로 천공된 카드는 입력시킬 카드를 쌓아 놓는 곳(호퍼: hopper)에서 판독기를 거쳐 판독이 끝난 카드가 보내지는 곳(스태커: stacker)에 모여지면서 천공된 숫자나 문자를 판독하는 장치
- ② 광학 마크 판독기(OMR : Optical Mark Reader) : 특수한 재료가 포함된 잉크나 연필로 표시한 데이터를 광학적으로 판독하는 장치
- ③ 광학 문자 판독기(OCR: Optical Character Reader): 특정한 모양의 글자를 종이에 인쇄하여, 그 인쇄된 글자를 광학적으로 판독하는 장치
- ④ 디지타이저(Digitizer): 그림, 차트, 도표, 설계도면 등의 아날로그 측정값을 읽어 들여 이를 디지털화하여 컴퓨터에 입력시키는 장치
- ⑤ 바코드 판독기(Bar Code Reader): 슈퍼마켓이나 서적 등에서 볼 수 있는 입력 장치로 상품에 인쇄된 바코드를 광학적으로 읽어 들여, 신뢰성 높은 자료의 입력을 가능하게 함

다. 자기 입력장치

- ① 자기 디스크(Magnetic disk): 데이터의 순차접근과 직접 접근이 모두 가능하며, 다른 보조 기억장치에 비해 비교적 속도가 빠르므로 보조기억장치로 널리 사용
- ② 자기 테이프(Magnetic tape): 기억된 데이터의 순서에 따라 내용을 읽는 순차적 접근만 가능하며 속도가 느려 데이터 백업용으로 사용, 가격이 저렴하여 보관할 데이터가 많은 대형 컴퓨터의 보조기억장치에 주로 사용
- ③ 자기 잉크 문자 판독기(MICR: Magnetic Ink Character Reader): 자성을 띤 특수한 잉크로 기록된 숫자나 기호를 직접 판독하는 장치

(6) 출력 장치

- ① 모니터: 주기억장치의 자료를 모니터 화면에 문자나 숫자, 도형 등으로 나타내 주는 장치로서 음극선관(CRT:cathode ray tube), 액정 화면(LCD:liquid crystal display), 플라즈마 디스플레이(PDP:plasma display panel) 방식 등 이 있음
- ② 프린터: 컴퓨터에서 처리된 결과를 용지에 활자로 인쇄하여 보여주는 장치이며 도트 매트릭스 프린터, 잉크젯 프린터, 레이저 프린터 등이 있음

- ③ 스피커: 사운드 카드를 통해 소리를 들을 수 있도록 해 주는 장치
- ④ 빔 프로젝터 : 컴퓨터 화면의 내용을 스크린으로 비추어 표시해 주는 장치
- ⑤ 플로터(plotter) : 장치에 붙어있는 펜이 X축 Y축 즉, 상하좌우로 이동해서 용지에 도형이나 그래프를 그려주는 장치로 CAD의 표준 출력장치